This commit is contained in:
nephacks
2025-06-04 03:22:50 +02:00
parent f234f23848
commit f12416cffd
14243 changed files with 6446499 additions and 26 deletions

View File

@@ -0,0 +1,466 @@
//== llvm/Support/APFloat.h - Arbitrary Precision Floating Point -*- C++ -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares a class to represent arbitrary precision floating
// point values and provide a variety of arithmetic operations on them.
//
//===----------------------------------------------------------------------===//
/* A self-contained host- and target-independent arbitrary-precision
floating-point software implementation. It uses bignum integer
arithmetic as provided by static functions in the APInt class.
The library will work with bignum integers whose parts are any
unsigned type at least 16 bits wide, but 64 bits is recommended.
Written for clarity rather than speed, in particular with a view
to use in the front-end of a cross compiler so that target
arithmetic can be correctly performed on the host. Performance
should nonetheless be reasonable, particularly for its intended
use. It may be useful as a base implementation for a run-time
library during development of a faster target-specific one.
All 5 rounding modes in the IEEE-754R draft are handled correctly
for all implemented operations. Currently implemented operations
are add, subtract, multiply, divide, fused-multiply-add,
conversion-to-float, conversion-to-integer and
conversion-from-integer. New rounding modes (e.g. away from zero)
can be added with three or four lines of code.
Four formats are built-in: IEEE single precision, double
precision, quadruple precision, and x87 80-bit extended double
(when operating with full extended precision). Adding a new
format that obeys IEEE semantics only requires adding two lines of
code: a declaration and definition of the format.
All operations return the status of that operation as an exception
bit-mask, so multiple operations can be done consecutively with
their results or-ed together. The returned status can be useful
for compiler diagnostics; e.g., inexact, underflow and overflow
can be easily diagnosed on constant folding, and compiler
optimizers can determine what exceptions would be raised by
folding operations and optimize, or perhaps not optimize,
accordingly.
At present, underflow tininess is detected after rounding; it
should be straight forward to add support for the before-rounding
case too.
The library reads hexadecimal floating point numbers as per C99,
and correctly rounds if necessary according to the specified
rounding mode. Syntax is required to have been validated by the
caller. It also converts floating point numbers to hexadecimal
text as per the C99 %a and %A conversions. The output precision
(or alternatively the natural minimal precision) can be specified;
if the requested precision is less than the natural precision the
output is correctly rounded for the specified rounding mode.
It also reads decimal floating point numbers and correctly rounds
according to the specified rounding mode.
Conversion to decimal text is not currently implemented.
Non-zero finite numbers are represented internally as a sign bit,
a 16-bit signed exponent, and the significand as an array of
integer parts. After normalization of a number of precision P the
exponent is within the range of the format, and if the number is
not denormal the P-th bit of the significand is set as an explicit
integer bit. For denormals the most significant bit is shifted
right so that the exponent is maintained at the format's minimum,
so that the smallest denormal has just the least significant bit
of the significand set. The sign of zeroes and infinities is
significant; the exponent and significand of such numbers is not
stored, but has a known implicit (deterministic) value: 0 for the
significands, 0 for zero exponent, all 1 bits for infinity
exponent. For NaNs the sign and significand are deterministic,
although not really meaningful, and preserved in non-conversion
operations. The exponent is implicitly all 1 bits.
TODO
====
Some features that may or may not be worth adding:
Binary to decimal conversion (hard).
Optional ability to detect underflow tininess before rounding.
New formats: x87 in single and double precision mode (IEEE apart
from extended exponent range) (hard).
New operations: sqrt, IEEE remainder, C90 fmod, nextafter,
nexttoward.
*/
#ifndef LLVM_ADT_APFLOAT_H
#define LLVM_ADT_APFLOAT_H
// APInt contains static functions implementing bignum arithmetic.
#include "llvm/ADT/APInt.h"
namespace llvm {
/* Exponents are stored as signed numbers. */
typedef signed short exponent_t;
struct fltSemantics;
class APSInt;
class StringRef;
/* When bits of a floating point number are truncated, this enum is
used to indicate what fraction of the LSB those bits represented.
It essentially combines the roles of guard and sticky bits. */
enum lostFraction { // Example of truncated bits:
lfExactlyZero, // 000000
lfLessThanHalf, // 0xxxxx x's not all zero
lfExactlyHalf, // 100000
lfMoreThanHalf // 1xxxxx x's not all zero
};
class APFloat {
public:
/* We support the following floating point semantics. */
static const fltSemantics IEEEhalf;
static const fltSemantics IEEEsingle;
static const fltSemantics IEEEdouble;
static const fltSemantics IEEEquad;
static const fltSemantics PPCDoubleDouble;
static const fltSemantics x87DoubleExtended;
/* And this pseudo, used to construct APFloats that cannot
conflict with anything real. */
static const fltSemantics Bogus;
static unsigned int semanticsPrecision(const fltSemantics &);
/* Floating point numbers have a four-state comparison relation. */
enum cmpResult {
cmpLessThan,
cmpEqual,
cmpGreaterThan,
cmpUnordered
};
/* IEEE-754R gives five rounding modes. */
enum roundingMode {
rmNearestTiesToEven,
rmTowardPositive,
rmTowardNegative,
rmTowardZero,
rmNearestTiesToAway
};
// Operation status. opUnderflow or opOverflow are always returned
// or-ed with opInexact.
enum opStatus {
opOK = 0x00,
opInvalidOp = 0x01,
opDivByZero = 0x02,
opOverflow = 0x04,
opUnderflow = 0x08,
opInexact = 0x10
};
// Category of internally-represented number.
enum fltCategory {
fcInfinity,
fcNaN,
fcNormal,
fcZero
};
enum uninitializedTag {
uninitialized
};
// Constructors.
APFloat(const fltSemantics &); // Default construct to 0.0
APFloat(const fltSemantics &, StringRef);
APFloat(const fltSemantics &, integerPart);
APFloat(const fltSemantics &, fltCategory, bool negative);
APFloat(const fltSemantics &, uninitializedTag);
APFloat(const fltSemantics &, const APInt &);
explicit APFloat(double d);
explicit APFloat(float f);
APFloat(const APFloat &);
~APFloat();
// Convenience "constructors"
static APFloat getZero(const fltSemantics &Sem, bool Negative = false) {
return APFloat(Sem, fcZero, Negative);
}
static APFloat getInf(const fltSemantics &Sem, bool Negative = false) {
return APFloat(Sem, fcInfinity, Negative);
}
/// getNaN - Factory for QNaN values.
///
/// \param Negative - True iff the NaN generated should be negative.
/// \param type - The unspecified fill bits for creating the NaN, 0 by
/// default. The value is truncated as necessary.
static APFloat getNaN(const fltSemantics &Sem, bool Negative = false,
unsigned type = 0) {
if (type) {
APInt fill(64, type);
return getQNaN(Sem, Negative, &fill);
} else {
return getQNaN(Sem, Negative, 0);
}
}
/// getQNan - Factory for QNaN values.
static APFloat getQNaN(const fltSemantics &Sem,
bool Negative = false,
const APInt *payload = 0) {
return makeNaN(Sem, false, Negative, payload);
}
/// getSNan - Factory for SNaN values.
static APFloat getSNaN(const fltSemantics &Sem,
bool Negative = false,
const APInt *payload = 0) {
return makeNaN(Sem, true, Negative, payload);
}
/// getLargest - Returns the largest finite number in the given
/// semantics.
///
/// \param Negative - True iff the number should be negative
static APFloat getLargest(const fltSemantics &Sem, bool Negative = false);
/// getSmallest - Returns the smallest (by magnitude) finite number
/// in the given semantics. Might be denormalized, which implies a
/// relative loss of precision.
///
/// \param Negative - True iff the number should be negative
static APFloat getSmallest(const fltSemantics &Sem, bool Negative = false);
/// getSmallestNormalized - Returns the smallest (by magnitude)
/// normalized finite number in the given semantics.
///
/// \param Negative - True iff the number should be negative
static APFloat getSmallestNormalized(const fltSemantics &Sem,
bool Negative = false);
/// getAllOnesValue - Returns a float which is bitcasted from
/// an all one value int.
///
/// \param BitWidth - Select float type
/// \param isIEEE - If 128 bit number, select between PPC and IEEE
static APFloat getAllOnesValue(unsigned BitWidth, bool isIEEE = false);
/// Profile - Used to insert APFloat objects, or objects that contain
/// APFloat objects, into FoldingSets.
void Profile(FoldingSetNodeID& NID) const;
/// @brief Used by the Bitcode serializer to emit APInts to Bitcode.
void Emit(Serializer& S) const;
/// @brief Used by the Bitcode deserializer to deserialize APInts.
static APFloat ReadVal(Deserializer& D);
/* Arithmetic. */
opStatus add(const APFloat &, roundingMode);
opStatus subtract(const APFloat &, roundingMode);
opStatus multiply(const APFloat &, roundingMode);
opStatus divide(const APFloat &, roundingMode);
/* IEEE remainder. */
opStatus remainder(const APFloat &);
/* C fmod, or llvm frem. */
opStatus mod(const APFloat &, roundingMode);
opStatus fusedMultiplyAdd(const APFloat &, const APFloat &, roundingMode);
opStatus roundToIntegral(roundingMode);
/* Sign operations. */
void changeSign();
void clearSign();
void copySign(const APFloat &);
/* Conversions. */
opStatus convert(const fltSemantics &, roundingMode, bool *);
opStatus convertToInteger(integerPart *, unsigned int, bool,
roundingMode, bool *) const;
opStatus convertToInteger(APSInt&, roundingMode, bool *) const;
opStatus convertFromAPInt(const APInt &,
bool, roundingMode);
opStatus convertFromSignExtendedInteger(const integerPart *, unsigned int,
bool, roundingMode);
opStatus convertFromZeroExtendedInteger(const integerPart *, unsigned int,
bool, roundingMode);
opStatus convertFromString(StringRef, roundingMode);
APInt bitcastToAPInt() const;
double convertToDouble() const;
float convertToFloat() const;
/* The definition of equality is not straightforward for floating point,
so we won't use operator==. Use one of the following, or write
whatever it is you really mean. */
bool operator==(const APFloat &) const LLVM_DELETED_FUNCTION;
/* IEEE comparison with another floating point number (NaNs
compare unordered, 0==-0). */
cmpResult compare(const APFloat &) const;
/* Bitwise comparison for equality (QNaNs compare equal, 0!=-0). */
bool bitwiseIsEqual(const APFloat &) const;
/* Write out a hexadecimal representation of the floating point
value to DST, which must be of sufficient size, in the C99 form
[-]0xh.hhhhp[+-]d. Return the number of characters written,
excluding the terminating NUL. */
unsigned int convertToHexString(char *dst, unsigned int hexDigits,
bool upperCase, roundingMode) const;
/* Simple queries. */
fltCategory getCategory() const { return category; }
const fltSemantics &getSemantics() const { return *semantics; }
bool isZero() const { return category == fcZero; }
bool isNonZero() const { return category != fcZero; }
bool isNormal() const { return category == fcNormal; }
bool isNaN() const { return category == fcNaN; }
bool isInfinity() const { return category == fcInfinity; }
bool isNegative() const { return sign; }
bool isPosZero() const { return isZero() && !isNegative(); }
bool isNegZero() const { return isZero() && isNegative(); }
bool isDenormal() const;
APFloat& operator=(const APFloat &);
/// \brief Overload to compute a hash code for an APFloat value.
///
/// Note that the use of hash codes for floating point values is in general
/// frought with peril. Equality is hard to define for these values. For
/// example, should negative and positive zero hash to different codes? Are
/// they equal or not? This hash value implementation specifically
/// emphasizes producing different codes for different inputs in order to
/// be used in canonicalization and memoization. As such, equality is
/// bitwiseIsEqual, and 0 != -0.
friend hash_code hash_value(const APFloat &Arg);
/// Converts this value into a decimal string.
///
/// \param FormatPrecision The maximum number of digits of
/// precision to output. If there are fewer digits available,
/// zero padding will not be used unless the value is
/// integral and small enough to be expressed in
/// FormatPrecision digits. 0 means to use the natural
/// precision of the number.
/// \param FormatMaxPadding The maximum number of zeros to
/// consider inserting before falling back to scientific
/// notation. 0 means to always use scientific notation.
///
/// Number Precision MaxPadding Result
/// ------ --------- ---------- ------
/// 1.01E+4 5 2 10100
/// 1.01E+4 4 2 1.01E+4
/// 1.01E+4 5 1 1.01E+4
/// 1.01E-2 5 2 0.0101
/// 1.01E-2 4 2 0.0101
/// 1.01E-2 4 1 1.01E-2
void toString(SmallVectorImpl<char> &Str,
unsigned FormatPrecision = 0,
unsigned FormatMaxPadding = 3) const;
/// getExactInverse - If this value has an exact multiplicative inverse,
/// store it in inv and return true.
bool getExactInverse(APFloat *inv) const;
private:
/* Trivial queries. */
integerPart *significandParts();
const integerPart *significandParts() const;
unsigned int partCount() const;
/* Significand operations. */
integerPart addSignificand(const APFloat &);
integerPart subtractSignificand(const APFloat &, integerPart);
lostFraction addOrSubtractSignificand(const APFloat &, bool subtract);
lostFraction multiplySignificand(const APFloat &, const APFloat *);
lostFraction divideSignificand(const APFloat &);
void incrementSignificand();
void initialize(const fltSemantics *);
void shiftSignificandLeft(unsigned int);
lostFraction shiftSignificandRight(unsigned int);
unsigned int significandLSB() const;
unsigned int significandMSB() const;
void zeroSignificand();
/* Arithmetic on special values. */
opStatus addOrSubtractSpecials(const APFloat &, bool subtract);
opStatus divideSpecials(const APFloat &);
opStatus multiplySpecials(const APFloat &);
opStatus modSpecials(const APFloat &);
/* Miscellany. */
static APFloat makeNaN(const fltSemantics &Sem, bool SNaN, bool Negative,
const APInt *fill);
void makeNaN(bool SNaN = false, bool Neg = false, const APInt *fill = 0);
opStatus normalize(roundingMode, lostFraction);
opStatus addOrSubtract(const APFloat &, roundingMode, bool subtract);
cmpResult compareAbsoluteValue(const APFloat &) const;
opStatus handleOverflow(roundingMode);
bool roundAwayFromZero(roundingMode, lostFraction, unsigned int) const;
opStatus convertToSignExtendedInteger(integerPart *, unsigned int, bool,
roundingMode, bool *) const;
opStatus convertFromUnsignedParts(const integerPart *, unsigned int,
roundingMode);
opStatus convertFromHexadecimalString(StringRef, roundingMode);
opStatus convertFromDecimalString(StringRef, roundingMode);
char *convertNormalToHexString(char *, unsigned int, bool,
roundingMode) const;
opStatus roundSignificandWithExponent(const integerPart *, unsigned int,
int, roundingMode);
APInt convertHalfAPFloatToAPInt() const;
APInt convertFloatAPFloatToAPInt() const;
APInt convertDoubleAPFloatToAPInt() const;
APInt convertQuadrupleAPFloatToAPInt() const;
APInt convertF80LongDoubleAPFloatToAPInt() const;
APInt convertPPCDoubleDoubleAPFloatToAPInt() const;
void initFromAPInt(const fltSemantics *Sem, const APInt& api);
void initFromHalfAPInt(const APInt& api);
void initFromFloatAPInt(const APInt& api);
void initFromDoubleAPInt(const APInt& api);
void initFromQuadrupleAPInt(const APInt &api);
void initFromF80LongDoubleAPInt(const APInt& api);
void initFromPPCDoubleDoubleAPInt(const APInt& api);
void assign(const APFloat &);
void copySignificand(const APFloat &);
void freeSignificand();
/* What kind of semantics does this value obey? */
const fltSemantics *semantics;
/* Significand - the fraction with an explicit integer bit. Must be
at least one bit wider than the target precision. */
union Significand
{
integerPart part;
integerPart *parts;
} significand;
/* The exponent - a signed number. */
exponent_t exponent;
/* What kind of floating point number this is. */
/* Only 2 bits are required, but VisualStudio incorrectly sign extends
it. Using the extra bit keeps it from failing under VisualStudio */
fltCategory category: 3;
/* The sign bit of this number. */
unsigned int sign: 1;
};
// See friend declaration above. This additional declaration is required in
// order to compile LLVM with IBM xlC compiler.
hash_code hash_value(const APFloat &Arg);
} /* namespace llvm */
#endif /* LLVM_ADT_APFLOAT_H */

1767
thirdparty/clang/include/llvm/ADT/APInt.h vendored Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,312 @@
//===-- llvm/ADT/APSInt.h - Arbitrary Precision Signed Int -----*- C++ -*--===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the APSInt class, which is a simple class that
// represents an arbitrary sized integer that knows its signedness.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_APSINT_H
#define LLVM_ADT_APSINT_H
#include "llvm/ADT/APInt.h"
namespace llvm {
class APSInt : public APInt {
bool IsUnsigned;
public:
/// Default constructor that creates an uninitialized APInt.
explicit APSInt() : IsUnsigned(false) {}
/// APSInt ctor - Create an APSInt with the specified width, default to
/// unsigned.
explicit APSInt(uint32_t BitWidth, bool isUnsigned = true)
: APInt(BitWidth, 0), IsUnsigned(isUnsigned) {}
explicit APSInt(const APInt &I, bool isUnsigned = true)
: APInt(I), IsUnsigned(isUnsigned) {}
APSInt &operator=(const APSInt &RHS) {
APInt::operator=(RHS);
IsUnsigned = RHS.IsUnsigned;
return *this;
}
APSInt &operator=(const APInt &RHS) {
// Retain our current sign.
APInt::operator=(RHS);
return *this;
}
APSInt &operator=(uint64_t RHS) {
// Retain our current sign.
APInt::operator=(RHS);
return *this;
}
// Query sign information.
bool isSigned() const { return !IsUnsigned; }
bool isUnsigned() const { return IsUnsigned; }
void setIsUnsigned(bool Val) { IsUnsigned = Val; }
void setIsSigned(bool Val) { IsUnsigned = !Val; }
/// toString - Append this APSInt to the specified SmallString.
void toString(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
APInt::toString(Str, Radix, isSigned());
}
/// toString - Converts an APInt to a std::string. This is an inefficient
/// method, your should prefer passing in a SmallString instead.
std::string toString(unsigned Radix) const {
return APInt::toString(Radix, isSigned());
}
using APInt::toString;
APSInt trunc(uint32_t width) const {
return APSInt(APInt::trunc(width), IsUnsigned);
}
APSInt extend(uint32_t width) const {
if (IsUnsigned)
return APSInt(zext(width), IsUnsigned);
else
return APSInt(sext(width), IsUnsigned);
}
APSInt extOrTrunc(uint32_t width) const {
if (IsUnsigned)
return APSInt(zextOrTrunc(width), IsUnsigned);
else
return APSInt(sextOrTrunc(width), IsUnsigned);
}
const APSInt &operator%=(const APSInt &RHS) {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
if (IsUnsigned)
*this = urem(RHS);
else
*this = srem(RHS);
return *this;
}
const APSInt &operator/=(const APSInt &RHS) {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
if (IsUnsigned)
*this = udiv(RHS);
else
*this = sdiv(RHS);
return *this;
}
APSInt operator%(const APSInt &RHS) const {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
return IsUnsigned ? APSInt(urem(RHS), true) : APSInt(srem(RHS), false);
}
APSInt operator/(const APSInt &RHS) const {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
return IsUnsigned ? APSInt(udiv(RHS), true) : APSInt(sdiv(RHS), false);
}
APSInt operator>>(unsigned Amt) const {
return IsUnsigned ? APSInt(lshr(Amt), true) : APSInt(ashr(Amt), false);
}
APSInt& operator>>=(unsigned Amt) {
*this = *this >> Amt;
return *this;
}
inline bool operator<(const APSInt& RHS) const {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
return IsUnsigned ? ult(RHS) : slt(RHS);
}
inline bool operator>(const APSInt& RHS) const {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
return IsUnsigned ? ugt(RHS) : sgt(RHS);
}
inline bool operator<=(const APSInt& RHS) const {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
return IsUnsigned ? ule(RHS) : sle(RHS);
}
inline bool operator>=(const APSInt& RHS) const {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
return IsUnsigned ? uge(RHS) : sge(RHS);
}
inline bool operator==(const APSInt& RHS) const {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
return eq(RHS);
}
inline bool operator==(int64_t RHS) const {
return isSameValue(*this, APSInt(APInt(64, RHS), true));
}
inline bool operator!=(const APSInt& RHS) const {
return !((*this) == RHS);
}
inline bool operator!=(int64_t RHS) const {
return !((*this) == RHS);
}
// The remaining operators just wrap the logic of APInt, but retain the
// signedness information.
APSInt operator<<(unsigned Bits) const {
return APSInt(static_cast<const APInt&>(*this) << Bits, IsUnsigned);
}
APSInt& operator<<=(unsigned Amt) {
*this = *this << Amt;
return *this;
}
APSInt& operator++() {
++(static_cast<APInt&>(*this));
return *this;
}
APSInt& operator--() {
--(static_cast<APInt&>(*this));
return *this;
}
APSInt operator++(int) {
return APSInt(++static_cast<APInt&>(*this), IsUnsigned);
}
APSInt operator--(int) {
return APSInt(--static_cast<APInt&>(*this), IsUnsigned);
}
APSInt operator-() const {
return APSInt(-static_cast<const APInt&>(*this), IsUnsigned);
}
APSInt& operator+=(const APSInt& RHS) {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
static_cast<APInt&>(*this) += RHS;
return *this;
}
APSInt& operator-=(const APSInt& RHS) {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
static_cast<APInt&>(*this) -= RHS;
return *this;
}
APSInt& operator*=(const APSInt& RHS) {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
static_cast<APInt&>(*this) *= RHS;
return *this;
}
APSInt& operator&=(const APSInt& RHS) {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
static_cast<APInt&>(*this) &= RHS;
return *this;
}
APSInt& operator|=(const APSInt& RHS) {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
static_cast<APInt&>(*this) |= RHS;
return *this;
}
APSInt& operator^=(const APSInt& RHS) {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
static_cast<APInt&>(*this) ^= RHS;
return *this;
}
APSInt operator&(const APSInt& RHS) const {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
return APSInt(static_cast<const APInt&>(*this) & RHS, IsUnsigned);
}
APSInt And(const APSInt& RHS) const {
return this->operator&(RHS);
}
APSInt operator|(const APSInt& RHS) const {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
return APSInt(static_cast<const APInt&>(*this) | RHS, IsUnsigned);
}
APSInt Or(const APSInt& RHS) const {
return this->operator|(RHS);
}
APSInt operator^(const APSInt& RHS) const {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
return APSInt(static_cast<const APInt&>(*this) ^ RHS, IsUnsigned);
}
APSInt Xor(const APSInt& RHS) const {
return this->operator^(RHS);
}
APSInt operator*(const APSInt& RHS) const {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
return APSInt(static_cast<const APInt&>(*this) * RHS, IsUnsigned);
}
APSInt operator+(const APSInt& RHS) const {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
return APSInt(static_cast<const APInt&>(*this) + RHS, IsUnsigned);
}
APSInt operator-(const APSInt& RHS) const {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
return APSInt(static_cast<const APInt&>(*this) - RHS, IsUnsigned);
}
APSInt operator~() const {
return APSInt(~static_cast<const APInt&>(*this), IsUnsigned);
}
/// getMaxValue - Return the APSInt representing the maximum integer value
/// with the given bit width and signedness.
static APSInt getMaxValue(uint32_t numBits, bool Unsigned) {
return APSInt(Unsigned ? APInt::getMaxValue(numBits)
: APInt::getSignedMaxValue(numBits), Unsigned);
}
/// getMinValue - Return the APSInt representing the minimum integer value
/// with the given bit width and signedness.
static APSInt getMinValue(uint32_t numBits, bool Unsigned) {
return APSInt(Unsigned ? APInt::getMinValue(numBits)
: APInt::getSignedMinValue(numBits), Unsigned);
}
/// \brief Determine if two APSInts have the same value, zero- or
/// sign-extending as needed.
static bool isSameValue(const APSInt &I1, const APSInt &I2) {
if (I1.getBitWidth() == I2.getBitWidth() && I1.isSigned() == I2.isSigned())
return I1 == I2;
// Check for a bit-width mismatch.
if (I1.getBitWidth() > I2.getBitWidth())
return isSameValue(I1, I2.extend(I1.getBitWidth()));
else if (I2.getBitWidth() > I1.getBitWidth())
return isSameValue(I1.extend(I2.getBitWidth()), I2);
// We have a signedness mismatch. Turn the signed value into an unsigned
// value.
if (I1.isSigned()) {
if (I1.isNegative())
return false;
return APSInt(I1, true) == I2;
}
if (I2.isNegative())
return false;
return I1 == APSInt(I2, true);
}
/// Profile - Used to insert APSInt objects, or objects that contain APSInt
/// objects, into FoldingSets.
void Profile(FoldingSetNodeID& ID) const;
};
inline bool operator==(int64_t V1, const APSInt& V2) {
return V2 == V1;
}
inline bool operator!=(int64_t V1, const APSInt& V2) {
return V2 != V1;
}
inline raw_ostream &operator<<(raw_ostream &OS, const APSInt &I) {
I.print(OS, I.isSigned());
return OS;
}
} // end namespace llvm
#endif

View File

@@ -0,0 +1,310 @@
//===--- ArrayRef.h - Array Reference Wrapper -------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_ARRAYREF_H
#define LLVM_ADT_ARRAYREF_H
#include "llvm/ADT/SmallVector.h"
#include <vector>
namespace llvm {
/// ArrayRef - Represent a constant reference to an array (0 or more elements
/// consecutively in memory), i.e. a start pointer and a length. It allows
/// various APIs to take consecutive elements easily and conveniently.
///
/// This class does not own the underlying data, it is expected to be used in
/// situations where the data resides in some other buffer, whose lifetime
/// extends past that of the ArrayRef. For this reason, it is not in general
/// safe to store an ArrayRef.
///
/// This is intended to be trivially copyable, so it should be passed by
/// value.
template<typename T>
class ArrayRef {
public:
typedef const T *iterator;
typedef const T *const_iterator;
typedef size_t size_type;
typedef std::reverse_iterator<iterator> reverse_iterator;
private:
/// The start of the array, in an external buffer.
const T *Data;
/// The number of elements.
size_type Length;
public:
/// @name Constructors
/// @{
/// Construct an empty ArrayRef.
/*implicit*/ ArrayRef() : Data(0), Length(0) {}
/// Construct an ArrayRef from a single element.
/*implicit*/ ArrayRef(const T &OneElt)
: Data(&OneElt), Length(1) {}
/// Construct an ArrayRef from a pointer and length.
/*implicit*/ ArrayRef(const T *data, size_t length)
: Data(data), Length(length) {}
/// Construct an ArrayRef from a range.
ArrayRef(const T *begin, const T *end)
: Data(begin), Length(end - begin) {}
/// Construct an ArrayRef from a SmallVector. This is templated in order to
/// avoid instantiating SmallVectorTemplateCommon<T> whenever we
/// copy-construct an ArrayRef.
template<typename U>
/*implicit*/ ArrayRef(const SmallVectorTemplateCommon<T, U> &Vec)
: Data(Vec.data()), Length(Vec.size()) {
}
/// Construct an ArrayRef from a std::vector.
template<typename A>
/*implicit*/ ArrayRef(const std::vector<T, A> &Vec)
: Data(Vec.empty() ? (T*)0 : &Vec[0]), Length(Vec.size()) {}
/// Construct an ArrayRef from a C array.
template <size_t N>
/*implicit*/ ArrayRef(const T (&Arr)[N])
: Data(Arr), Length(N) {}
/// @}
/// @name Simple Operations
/// @{
iterator begin() const { return Data; }
iterator end() const { return Data + Length; }
reverse_iterator rbegin() const { return reverse_iterator(end()); }
reverse_iterator rend() const { return reverse_iterator(begin()); }
/// empty - Check if the array is empty.
bool empty() const { return Length == 0; }
const T *data() const { return Data; }
/// size - Get the array size.
size_t size() const { return Length; }
/// front - Get the first element.
const T &front() const {
assert(!empty());
return Data[0];
}
/// back - Get the last element.
const T &back() const {
assert(!empty());
return Data[Length-1];
}
/// equals - Check for element-wise equality.
bool equals(ArrayRef RHS) const {
if (Length != RHS.Length)
return false;
for (size_type i = 0; i != Length; i++)
if (Data[i] != RHS.Data[i])
return false;
return true;
}
/// slice(n) - Chop off the first N elements of the array.
ArrayRef<T> slice(unsigned N) const {
assert(N <= size() && "Invalid specifier");
return ArrayRef<T>(data()+N, size()-N);
}
/// slice(n, m) - Chop off the first N elements of the array, and keep M
/// elements in the array.
ArrayRef<T> slice(unsigned N, unsigned M) const {
assert(N+M <= size() && "Invalid specifier");
return ArrayRef<T>(data()+N, M);
}
/// @}
/// @name Operator Overloads
/// @{
const T &operator[](size_t Index) const {
assert(Index < Length && "Invalid index!");
return Data[Index];
}
/// @}
/// @name Expensive Operations
/// @{
std::vector<T> vec() const {
return std::vector<T>(Data, Data+Length);
}
/// @}
/// @name Conversion operators
/// @{
operator std::vector<T>() const {
return std::vector<T>(Data, Data+Length);
}
/// @}
};
/// MutableArrayRef - Represent a mutable reference to an array (0 or more
/// elements consecutively in memory), i.e. a start pointer and a length. It
/// allows various APIs to take and modify consecutive elements easily and
/// conveniently.
///
/// This class does not own the underlying data, it is expected to be used in
/// situations where the data resides in some other buffer, whose lifetime
/// extends past that of the MutableArrayRef. For this reason, it is not in
/// general safe to store a MutableArrayRef.
///
/// This is intended to be trivially copyable, so it should be passed by
/// value.
template<typename T>
class MutableArrayRef : public ArrayRef<T> {
public:
typedef T *iterator;
/// Construct an empty ArrayRef.
/*implicit*/ MutableArrayRef() : ArrayRef<T>() {}
/// Construct an MutableArrayRef from a single element.
/*implicit*/ MutableArrayRef(T &OneElt) : ArrayRef<T>(OneElt) {}
/// Construct an MutableArrayRef from a pointer and length.
/*implicit*/ MutableArrayRef(T *data, size_t length)
: ArrayRef<T>(data, length) {}
/// Construct an MutableArrayRef from a range.
MutableArrayRef(T *begin, T *end) : ArrayRef<T>(begin, end) {}
/// Construct an MutableArrayRef from a SmallVector.
/*implicit*/ MutableArrayRef(SmallVectorImpl<T> &Vec)
: ArrayRef<T>(Vec) {}
/// Construct a MutableArrayRef from a std::vector.
/*implicit*/ MutableArrayRef(std::vector<T> &Vec)
: ArrayRef<T>(Vec) {}
/// Construct an MutableArrayRef from a C array.
template <size_t N>
/*implicit*/ MutableArrayRef(T (&Arr)[N])
: ArrayRef<T>(Arr) {}
T *data() const { return const_cast<T*>(ArrayRef<T>::data()); }
iterator begin() const { return data(); }
iterator end() const { return data() + this->size(); }
/// front - Get the first element.
T &front() const {
assert(!this->empty());
return data()[0];
}
/// back - Get the last element.
T &back() const {
assert(!this->empty());
return data()[this->size()-1];
}
/// slice(n) - Chop off the first N elements of the array.
MutableArrayRef<T> slice(unsigned N) const {
assert(N <= this->size() && "Invalid specifier");
return MutableArrayRef<T>(data()+N, this->size()-N);
}
/// slice(n, m) - Chop off the first N elements of the array, and keep M
/// elements in the array.
MutableArrayRef<T> slice(unsigned N, unsigned M) const {
assert(N+M <= this->size() && "Invalid specifier");
return MutableArrayRef<T>(data()+N, M);
}
/// @}
/// @name Operator Overloads
/// @{
T &operator[](size_t Index) const {
assert(Index < this->size() && "Invalid index!");
return data()[Index];
}
};
/// @name ArrayRef Convenience constructors
/// @{
/// Construct an ArrayRef from a single element.
template<typename T>
ArrayRef<T> makeArrayRef(const T &OneElt) {
return OneElt;
}
/// Construct an ArrayRef from a pointer and length.
template<typename T>
ArrayRef<T> makeArrayRef(const T *data, size_t length) {
return ArrayRef<T>(data, length);
}
/// Construct an ArrayRef from a range.
template<typename T>
ArrayRef<T> makeArrayRef(const T *begin, const T *end) {
return ArrayRef<T>(begin, end);
}
/// Construct an ArrayRef from a SmallVector.
template <typename T>
ArrayRef<T> makeArrayRef(const SmallVectorImpl<T> &Vec) {
return Vec;
}
/// Construct an ArrayRef from a SmallVector.
template <typename T, unsigned N>
ArrayRef<T> makeArrayRef(const SmallVector<T, N> &Vec) {
return Vec;
}
/// Construct an ArrayRef from a std::vector.
template<typename T>
ArrayRef<T> makeArrayRef(const std::vector<T> &Vec) {
return Vec;
}
/// Construct an ArrayRef from a C array.
template<typename T, size_t N>
ArrayRef<T> makeArrayRef(const T (&Arr)[N]) {
return ArrayRef<T>(Arr);
}
/// @}
/// @name ArrayRef Comparison Operators
/// @{
template<typename T>
inline bool operator==(ArrayRef<T> LHS, ArrayRef<T> RHS) {
return LHS.equals(RHS);
}
template<typename T>
inline bool operator!=(ArrayRef<T> LHS, ArrayRef<T> RHS) {
return !(LHS == RHS);
}
/// @}
// ArrayRefs can be treated like a POD type.
template <typename T> struct isPodLike;
template <typename T> struct isPodLike<ArrayRef<T> > {
static const bool value = true;
};
}
#endif

View File

@@ -0,0 +1,589 @@
//===- llvm/ADT/BitVector.h - Bit vectors -----------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the BitVector class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_BITVECTOR_H
#define LLVM_ADT_BITVECTOR_H
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include <algorithm>
#include <cassert>
#include <climits>
#include <cstdlib>
namespace llvm {
class BitVector {
typedef unsigned long BitWord;
enum { BITWORD_SIZE = (unsigned)sizeof(BitWord) * CHAR_BIT };
BitWord *Bits; // Actual bits.
unsigned Size; // Size of bitvector in bits.
unsigned Capacity; // Size of allocated memory in BitWord.
public:
// Encapsulation of a single bit.
class reference {
friend class BitVector;
BitWord *WordRef;
unsigned BitPos;
reference(); // Undefined
public:
reference(BitVector &b, unsigned Idx) {
WordRef = &b.Bits[Idx / BITWORD_SIZE];
BitPos = Idx % BITWORD_SIZE;
}
~reference() {}
reference &operator=(reference t) {
*this = bool(t);
return *this;
}
reference& operator=(bool t) {
if (t)
*WordRef |= 1L << BitPos;
else
*WordRef &= ~(1L << BitPos);
return *this;
}
operator bool() const {
return ((*WordRef) & (1L << BitPos)) ? true : false;
}
};
/// BitVector default ctor - Creates an empty bitvector.
BitVector() : Size(0), Capacity(0) {
Bits = 0;
}
/// BitVector ctor - Creates a bitvector of specified number of bits. All
/// bits are initialized to the specified value.
explicit BitVector(unsigned s, bool t = false) : Size(s) {
Capacity = NumBitWords(s);
Bits = (BitWord *)std::malloc(Capacity * sizeof(BitWord));
init_words(Bits, Capacity, t);
if (t)
clear_unused_bits();
}
/// BitVector copy ctor.
BitVector(const BitVector &RHS) : Size(RHS.size()) {
if (Size == 0) {
Bits = 0;
Capacity = 0;
return;
}
Capacity = NumBitWords(RHS.size());
Bits = (BitWord *)std::malloc(Capacity * sizeof(BitWord));
std::memcpy(Bits, RHS.Bits, Capacity * sizeof(BitWord));
}
#if LLVM_HAS_RVALUE_REFERENCES
BitVector(BitVector &&RHS)
: Bits(RHS.Bits), Size(RHS.Size), Capacity(RHS.Capacity) {
RHS.Bits = 0;
}
#endif
~BitVector() {
std::free(Bits);
}
/// empty - Tests whether there are no bits in this bitvector.
bool empty() const { return Size == 0; }
/// size - Returns the number of bits in this bitvector.
unsigned size() const { return Size; }
/// count - Returns the number of bits which are set.
unsigned count() const {
unsigned NumBits = 0;
for (unsigned i = 0; i < NumBitWords(size()); ++i)
if (sizeof(BitWord) == 4)
NumBits += CountPopulation_32((uint32_t)Bits[i]);
else if (sizeof(BitWord) == 8)
NumBits += CountPopulation_64(Bits[i]);
else
llvm_unreachable("Unsupported!");
return NumBits;
}
/// any - Returns true if any bit is set.
bool any() const {
for (unsigned i = 0; i < NumBitWords(size()); ++i)
if (Bits[i] != 0)
return true;
return false;
}
/// all - Returns true if all bits are set.
bool all() const {
// TODO: Optimize this.
return count() == size();
}
/// none - Returns true if none of the bits are set.
bool none() const {
return !any();
}
/// find_first - Returns the index of the first set bit, -1 if none
/// of the bits are set.
int find_first() const {
for (unsigned i = 0; i < NumBitWords(size()); ++i)
if (Bits[i] != 0) {
if (sizeof(BitWord) == 4)
return i * BITWORD_SIZE + CountTrailingZeros_32((uint32_t)Bits[i]);
if (sizeof(BitWord) == 8)
return i * BITWORD_SIZE + CountTrailingZeros_64(Bits[i]);
llvm_unreachable("Unsupported!");
}
return -1;
}
/// find_next - Returns the index of the next set bit following the
/// "Prev" bit. Returns -1 if the next set bit is not found.
int find_next(unsigned Prev) const {
++Prev;
if (Prev >= Size)
return -1;
unsigned WordPos = Prev / BITWORD_SIZE;
unsigned BitPos = Prev % BITWORD_SIZE;
BitWord Copy = Bits[WordPos];
// Mask off previous bits.
Copy &= ~0UL << BitPos;
if (Copy != 0) {
if (sizeof(BitWord) == 4)
return WordPos * BITWORD_SIZE + CountTrailingZeros_32((uint32_t)Copy);
if (sizeof(BitWord) == 8)
return WordPos * BITWORD_SIZE + CountTrailingZeros_64(Copy);
llvm_unreachable("Unsupported!");
}
// Check subsequent words.
for (unsigned i = WordPos+1; i < NumBitWords(size()); ++i)
if (Bits[i] != 0) {
if (sizeof(BitWord) == 4)
return i * BITWORD_SIZE + CountTrailingZeros_32((uint32_t)Bits[i]);
if (sizeof(BitWord) == 8)
return i * BITWORD_SIZE + CountTrailingZeros_64(Bits[i]);
llvm_unreachable("Unsupported!");
}
return -1;
}
/// clear - Clear all bits.
void clear() {
Size = 0;
}
/// resize - Grow or shrink the bitvector.
void resize(unsigned N, bool t = false) {
if (N > Capacity * BITWORD_SIZE) {
unsigned OldCapacity = Capacity;
grow(N);
init_words(&Bits[OldCapacity], (Capacity-OldCapacity), t);
}
// Set any old unused bits that are now included in the BitVector. This
// may set bits that are not included in the new vector, but we will clear
// them back out below.
if (N > Size)
set_unused_bits(t);
// Update the size, and clear out any bits that are now unused
unsigned OldSize = Size;
Size = N;
if (t || N < OldSize)
clear_unused_bits();
}
void reserve(unsigned N) {
if (N > Capacity * BITWORD_SIZE)
grow(N);
}
// Set, reset, flip
BitVector &set() {
init_words(Bits, Capacity, true);
clear_unused_bits();
return *this;
}
BitVector &set(unsigned Idx) {
Bits[Idx / BITWORD_SIZE] |= 1L << (Idx % BITWORD_SIZE);
return *this;
}
/// set - Efficiently set a range of bits in [I, E)
BitVector &set(unsigned I, unsigned E) {
assert(I <= E && "Attempted to set backwards range!");
assert(E <= size() && "Attempted to set out-of-bounds range!");
if (I == E) return *this;
if (I / BITWORD_SIZE == E / BITWORD_SIZE) {
BitWord EMask = 1UL << (E % BITWORD_SIZE);
BitWord IMask = 1UL << (I % BITWORD_SIZE);
BitWord Mask = EMask - IMask;
Bits[I / BITWORD_SIZE] |= Mask;
return *this;
}
BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE);
Bits[I / BITWORD_SIZE] |= PrefixMask;
I = RoundUpToAlignment(I, BITWORD_SIZE);
for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE)
Bits[I / BITWORD_SIZE] = ~0UL;
BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1;
Bits[I / BITWORD_SIZE] |= PostfixMask;
return *this;
}
BitVector &reset() {
init_words(Bits, Capacity, false);
return *this;
}
BitVector &reset(unsigned Idx) {
Bits[Idx / BITWORD_SIZE] &= ~(1L << (Idx % BITWORD_SIZE));
return *this;
}
/// reset - Efficiently reset a range of bits in [I, E)
BitVector &reset(unsigned I, unsigned E) {
assert(I <= E && "Attempted to reset backwards range!");
assert(E <= size() && "Attempted to reset out-of-bounds range!");
if (I == E) return *this;
if (I / BITWORD_SIZE == E / BITWORD_SIZE) {
BitWord EMask = 1UL << (E % BITWORD_SIZE);
BitWord IMask = 1UL << (I % BITWORD_SIZE);
BitWord Mask = EMask - IMask;
Bits[I / BITWORD_SIZE] &= ~Mask;
return *this;
}
BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE);
Bits[I / BITWORD_SIZE] &= ~PrefixMask;
I = RoundUpToAlignment(I, BITWORD_SIZE);
for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE)
Bits[I / BITWORD_SIZE] = 0UL;
BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1;
Bits[I / BITWORD_SIZE] &= ~PostfixMask;
return *this;
}
BitVector &flip() {
for (unsigned i = 0; i < NumBitWords(size()); ++i)
Bits[i] = ~Bits[i];
clear_unused_bits();
return *this;
}
BitVector &flip(unsigned Idx) {
Bits[Idx / BITWORD_SIZE] ^= 1L << (Idx % BITWORD_SIZE);
return *this;
}
// Indexing.
reference operator[](unsigned Idx) {
assert (Idx < Size && "Out-of-bounds Bit access.");
return reference(*this, Idx);
}
bool operator[](unsigned Idx) const {
assert (Idx < Size && "Out-of-bounds Bit access.");
BitWord Mask = 1L << (Idx % BITWORD_SIZE);
return (Bits[Idx / BITWORD_SIZE] & Mask) != 0;
}
bool test(unsigned Idx) const {
return (*this)[Idx];
}
/// Test if any common bits are set.
bool anyCommon(const BitVector &RHS) const {
unsigned ThisWords = NumBitWords(size());
unsigned RHSWords = NumBitWords(RHS.size());
for (unsigned i = 0, e = std::min(ThisWords, RHSWords); i != e; ++i)
if (Bits[i] & RHS.Bits[i])
return true;
return false;
}
// Comparison operators.
bool operator==(const BitVector &RHS) const {
unsigned ThisWords = NumBitWords(size());
unsigned RHSWords = NumBitWords(RHS.size());
unsigned i;
for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
if (Bits[i] != RHS.Bits[i])
return false;
// Verify that any extra words are all zeros.
if (i != ThisWords) {
for (; i != ThisWords; ++i)
if (Bits[i])
return false;
} else if (i != RHSWords) {
for (; i != RHSWords; ++i)
if (RHS.Bits[i])
return false;
}
return true;
}
bool operator!=(const BitVector &RHS) const {
return !(*this == RHS);
}
/// Intersection, union, disjoint union.
BitVector &operator&=(const BitVector &RHS) {
unsigned ThisWords = NumBitWords(size());
unsigned RHSWords = NumBitWords(RHS.size());
unsigned i;
for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
Bits[i] &= RHS.Bits[i];
// Any bits that are just in this bitvector become zero, because they aren't
// in the RHS bit vector. Any words only in RHS are ignored because they
// are already zero in the LHS.
for (; i != ThisWords; ++i)
Bits[i] = 0;
return *this;
}
/// reset - Reset bits that are set in RHS. Same as *this &= ~RHS.
BitVector &reset(const BitVector &RHS) {
unsigned ThisWords = NumBitWords(size());
unsigned RHSWords = NumBitWords(RHS.size());
unsigned i;
for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
Bits[i] &= ~RHS.Bits[i];
return *this;
}
/// test - Check if (This - RHS) is zero.
/// This is the same as reset(RHS) and any().
bool test(const BitVector &RHS) const {
unsigned ThisWords = NumBitWords(size());
unsigned RHSWords = NumBitWords(RHS.size());
unsigned i;
for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
if ((Bits[i] & ~RHS.Bits[i]) != 0)
return true;
for (; i != ThisWords ; ++i)
if (Bits[i] != 0)
return true;
return false;
}
BitVector &operator|=(const BitVector &RHS) {
if (size() < RHS.size())
resize(RHS.size());
for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i)
Bits[i] |= RHS.Bits[i];
return *this;
}
BitVector &operator^=(const BitVector &RHS) {
if (size() < RHS.size())
resize(RHS.size());
for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i)
Bits[i] ^= RHS.Bits[i];
return *this;
}
// Assignment operator.
const BitVector &operator=(const BitVector &RHS) {
if (this == &RHS) return *this;
Size = RHS.size();
unsigned RHSWords = NumBitWords(Size);
if (Size <= Capacity * BITWORD_SIZE) {
if (Size)
std::memcpy(Bits, RHS.Bits, RHSWords * sizeof(BitWord));
clear_unused_bits();
return *this;
}
// Grow the bitvector to have enough elements.
Capacity = RHSWords;
BitWord *NewBits = (BitWord *)std::malloc(Capacity * sizeof(BitWord));
std::memcpy(NewBits, RHS.Bits, Capacity * sizeof(BitWord));
// Destroy the old bits.
std::free(Bits);
Bits = NewBits;
return *this;
}
#if LLVM_HAS_RVALUE_REFERENCES
const BitVector &operator=(BitVector &&RHS) {
if (this == &RHS) return *this;
std::free(Bits);
Bits = RHS.Bits;
Size = RHS.Size;
Capacity = RHS.Capacity;
RHS.Bits = 0;
return *this;
}
#endif
void swap(BitVector &RHS) {
std::swap(Bits, RHS.Bits);
std::swap(Size, RHS.Size);
std::swap(Capacity, RHS.Capacity);
}
//===--------------------------------------------------------------------===//
// Portable bit mask operations.
//===--------------------------------------------------------------------===//
//
// These methods all operate on arrays of uint32_t, each holding 32 bits. The
// fixed word size makes it easier to work with literal bit vector constants
// in portable code.
//
// The LSB in each word is the lowest numbered bit. The size of a portable
// bit mask is always a whole multiple of 32 bits. If no bit mask size is
// given, the bit mask is assumed to cover the entire BitVector.
/// setBitsInMask - Add '1' bits from Mask to this vector. Don't resize.
/// This computes "*this |= Mask".
void setBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
applyMask<true, false>(Mask, MaskWords);
}
/// clearBitsInMask - Clear any bits in this vector that are set in Mask.
/// Don't resize. This computes "*this &= ~Mask".
void clearBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
applyMask<false, false>(Mask, MaskWords);
}
/// setBitsNotInMask - Add a bit to this vector for every '0' bit in Mask.
/// Don't resize. This computes "*this |= ~Mask".
void setBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
applyMask<true, true>(Mask, MaskWords);
}
/// clearBitsNotInMask - Clear a bit in this vector for every '0' bit in Mask.
/// Don't resize. This computes "*this &= Mask".
void clearBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
applyMask<false, true>(Mask, MaskWords);
}
private:
unsigned NumBitWords(unsigned S) const {
return (S + BITWORD_SIZE-1) / BITWORD_SIZE;
}
// Set the unused bits in the high words.
void set_unused_bits(bool t = true) {
// Set high words first.
unsigned UsedWords = NumBitWords(Size);
if (Capacity > UsedWords)
init_words(&Bits[UsedWords], (Capacity-UsedWords), t);
// Then set any stray high bits of the last used word.
unsigned ExtraBits = Size % BITWORD_SIZE;
if (ExtraBits) {
BitWord ExtraBitMask = ~0UL << ExtraBits;
if (t)
Bits[UsedWords-1] |= ExtraBitMask;
else
Bits[UsedWords-1] &= ~ExtraBitMask;
}
}
// Clear the unused bits in the high words.
void clear_unused_bits() {
set_unused_bits(false);
}
void grow(unsigned NewSize) {
Capacity = std::max(NumBitWords(NewSize), Capacity * 2);
Bits = (BitWord *)std::realloc(Bits, Capacity * sizeof(BitWord));
clear_unused_bits();
}
void init_words(BitWord *B, unsigned NumWords, bool t) {
memset(B, 0 - (int)t, NumWords*sizeof(BitWord));
}
template<bool AddBits, bool InvertMask>
void applyMask(const uint32_t *Mask, unsigned MaskWords) {
assert(BITWORD_SIZE % 32 == 0 && "Unsupported BitWord size.");
MaskWords = std::min(MaskWords, (size() + 31) / 32);
const unsigned Scale = BITWORD_SIZE / 32;
unsigned i;
for (i = 0; MaskWords >= Scale; ++i, MaskWords -= Scale) {
BitWord BW = Bits[i];
// This inner loop should unroll completely when BITWORD_SIZE > 32.
for (unsigned b = 0; b != BITWORD_SIZE; b += 32) {
uint32_t M = *Mask++;
if (InvertMask) M = ~M;
if (AddBits) BW |= BitWord(M) << b;
else BW &= ~(BitWord(M) << b);
}
Bits[i] = BW;
}
for (unsigned b = 0; MaskWords; b += 32, --MaskWords) {
uint32_t M = *Mask++;
if (InvertMask) M = ~M;
if (AddBits) Bits[i] |= BitWord(M) << b;
else Bits[i] &= ~(BitWord(M) << b);
}
if (AddBits)
clear_unused_bits();
}
};
} // End llvm namespace
namespace std {
/// Implement std::swap in terms of BitVector swap.
inline void
swap(llvm::BitVector &LHS, llvm::BitVector &RHS) {
LHS.swap(RHS);
}
}
#endif

View File

@@ -0,0 +1,77 @@
//===--- DAGDeltaAlgorithm.h - A DAG Minimization Algorithm ----*- C++ -*--===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_DAGDELTAALGORITHM_H
#define LLVM_ADT_DAGDELTAALGORITHM_H
#include <set>
#include <vector>
namespace llvm {
/// DAGDeltaAlgorithm - Implements a "delta debugging" algorithm for minimizing
/// directed acyclic graphs using a predicate function.
///
/// The result of the algorithm is a subset of the input change set which is
/// guaranteed to satisfy the predicate, assuming that the input set did. For
/// well formed predicates, the result set is guaranteed to be such that
/// removing any single element not required by the dependencies on the other
/// elements would falsify the predicate.
///
/// The DAG should be used to represent dependencies in the changes which are
/// likely to hold across the predicate function. That is, for a particular
/// changeset S and predicate P:
///
/// P(S) => P(S union pred(S))
///
/// The minization algorithm uses this dependency information to attempt to
/// eagerly prune large subsets of changes. As with \see DeltaAlgorithm, the DAG
/// is not required to satisfy this property, but the algorithm will run
/// substantially fewer tests with appropriate dependencies. \see DeltaAlgorithm
/// for more information on the properties which the predicate function itself
/// should satisfy.
class DAGDeltaAlgorithm {
virtual void anchor();
public:
typedef unsigned change_ty;
typedef std::pair<change_ty, change_ty> edge_ty;
// FIXME: Use a decent data structure.
typedef std::set<change_ty> changeset_ty;
typedef std::vector<changeset_ty> changesetlist_ty;
public:
virtual ~DAGDeltaAlgorithm() {}
/// Run - Minimize the DAG formed by the \p Changes vertices and the
/// \p Dependencies edges by executing \see ExecuteOneTest() on subsets of
/// changes and returning the smallest set which still satisfies the test
/// predicate and the input \p Dependencies.
///
/// \param Changes The list of changes.
///
/// \param Dependencies The list of dependencies amongst changes. For each
/// (x,y) in \p Dependencies, both x and y must be in \p Changes. The
/// minimization algorithm guarantees that for each tested changed set S,
/// \f$ x \in S \f$ implies \f$ y \in S \f$. It is an error to have cyclic
/// dependencies.
changeset_ty Run(const changeset_ty &Changes,
const std::vector<edge_ty> &Dependencies);
/// UpdatedSearchState - Callback used when the search state changes.
virtual void UpdatedSearchState(const changeset_ty &Changes,
const changesetlist_ty &Sets,
const changeset_ty &Required) {}
/// ExecuteOneTest - Execute a single test predicate on the change set \p S.
virtual bool ExecuteOneTest(const changeset_ty &S) = 0;
};
} // end namespace llvm
#endif

View File

@@ -0,0 +1,91 @@
//===--- DeltaAlgorithm.h - A Set Minimization Algorithm -------*- C++ -*--===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_DELTAALGORITHM_H
#define LLVM_ADT_DELTAALGORITHM_H
#include <set>
#include <vector>
namespace llvm {
/// DeltaAlgorithm - Implements the delta debugging algorithm (A. Zeller '99)
/// for minimizing arbitrary sets using a predicate function.
///
/// The result of the algorithm is a subset of the input change set which is
/// guaranteed to satisfy the predicate, assuming that the input set did. For
/// well formed predicates, the result set is guaranteed to be such that
/// removing any single element would falsify the predicate.
///
/// For best results the predicate function *should* (but need not) satisfy
/// certain properties, in particular:
/// (1) The predicate should return false on an empty set and true on the full
/// set.
/// (2) If the predicate returns true for a set of changes, it should return
/// true for all supersets of that set.
///
/// It is not an error to provide a predicate that does not satisfy these
/// requirements, and the algorithm will generally produce reasonable
/// results. However, it may run substantially more tests than with a good
/// predicate.
class DeltaAlgorithm {
public:
typedef unsigned change_ty;
// FIXME: Use a decent data structure.
typedef std::set<change_ty> changeset_ty;
typedef std::vector<changeset_ty> changesetlist_ty;
private:
/// Cache of failed test results. Successful test results are never cached
/// since we always reduce following a success.
std::set<changeset_ty> FailedTestsCache;
/// GetTestResult - Get the test result for the \p Changes from the
/// cache, executing the test if necessary.
///
/// \param Changes - The change set to test.
/// \return - The test result.
bool GetTestResult(const changeset_ty &Changes);
/// Split - Partition a set of changes \p S into one or two subsets.
void Split(const changeset_ty &S, changesetlist_ty &Res);
/// Delta - Minimize a set of \p Changes which has been partioned into
/// smaller sets, by attempting to remove individual subsets.
changeset_ty Delta(const changeset_ty &Changes,
const changesetlist_ty &Sets);
/// Search - Search for a subset (or subsets) in \p Sets which can be
/// removed from \p Changes while still satisfying the predicate.
///
/// \param Res - On success, a subset of Changes which satisfies the
/// predicate.
/// \return - True on success.
bool Search(const changeset_ty &Changes, const changesetlist_ty &Sets,
changeset_ty &Res);
protected:
/// UpdatedSearchState - Callback used when the search state changes.
virtual void UpdatedSearchState(const changeset_ty &Changes,
const changesetlist_ty &Sets) {}
/// ExecuteOneTest - Execute a single test predicate on the change set \p S.
virtual bool ExecuteOneTest(const changeset_ty &S) = 0;
public:
virtual ~DeltaAlgorithm();
/// Run - Minimize the set \p Changes by executing \see ExecuteOneTest() on
/// subsets of changes and returning the smallest set which still satisfies
/// the test predicate.
changeset_ty Run(const changeset_ty &Changes);
};
} // end namespace llvm
#endif

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,168 @@
//===- llvm/ADT/DenseMapInfo.h - Type traits for DenseMap -------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines DenseMapInfo traits for DenseMap.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_DENSEMAPINFO_H
#define LLVM_ADT_DENSEMAPINFO_H
#include "llvm/Support/PointerLikeTypeTraits.h"
#include "llvm/Support/type_traits.h"
namespace llvm {
template<typename T>
struct DenseMapInfo {
//static inline T getEmptyKey();
//static inline T getTombstoneKey();
//static unsigned getHashValue(const T &Val);
//static bool isEqual(const T &LHS, const T &RHS);
};
// Provide DenseMapInfo for all pointers.
template<typename T>
struct DenseMapInfo<T*> {
static inline T* getEmptyKey() {
uintptr_t Val = static_cast<uintptr_t>(-1);
Val <<= PointerLikeTypeTraits<T*>::NumLowBitsAvailable;
return reinterpret_cast<T*>(Val);
}
static inline T* getTombstoneKey() {
uintptr_t Val = static_cast<uintptr_t>(-2);
Val <<= PointerLikeTypeTraits<T*>::NumLowBitsAvailable;
return reinterpret_cast<T*>(Val);
}
static unsigned getHashValue(const T *PtrVal) {
return (unsigned((uintptr_t)PtrVal) >> 4) ^
(unsigned((uintptr_t)PtrVal) >> 9);
}
static bool isEqual(const T *LHS, const T *RHS) { return LHS == RHS; }
};
// Provide DenseMapInfo for chars.
template<> struct DenseMapInfo<char> {
static inline char getEmptyKey() { return ~0; }
static inline char getTombstoneKey() { return ~0 - 1; }
static unsigned getHashValue(const char& Val) { return Val * 37U; }
static bool isEqual(const char &LHS, const char &RHS) {
return LHS == RHS;
}
};
// Provide DenseMapInfo for unsigned ints.
template<> struct DenseMapInfo<unsigned> {
static inline unsigned getEmptyKey() { return ~0U; }
static inline unsigned getTombstoneKey() { return ~0U - 1; }
static unsigned getHashValue(const unsigned& Val) { return Val * 37U; }
static bool isEqual(const unsigned& LHS, const unsigned& RHS) {
return LHS == RHS;
}
};
// Provide DenseMapInfo for unsigned longs.
template<> struct DenseMapInfo<unsigned long> {
static inline unsigned long getEmptyKey() { return ~0UL; }
static inline unsigned long getTombstoneKey() { return ~0UL - 1L; }
static unsigned getHashValue(const unsigned long& Val) {
return (unsigned)(Val * 37UL);
}
static bool isEqual(const unsigned long& LHS, const unsigned long& RHS) {
return LHS == RHS;
}
};
// Provide DenseMapInfo for unsigned long longs.
template<> struct DenseMapInfo<unsigned long long> {
static inline unsigned long long getEmptyKey() { return ~0ULL; }
static inline unsigned long long getTombstoneKey() { return ~0ULL - 1ULL; }
static unsigned getHashValue(const unsigned long long& Val) {
return (unsigned)(Val * 37ULL);
}
static bool isEqual(const unsigned long long& LHS,
const unsigned long long& RHS) {
return LHS == RHS;
}
};
// Provide DenseMapInfo for ints.
template<> struct DenseMapInfo<int> {
static inline int getEmptyKey() { return 0x7fffffff; }
static inline int getTombstoneKey() { return -0x7fffffff - 1; }
static unsigned getHashValue(const int& Val) { return (unsigned)(Val * 37U); }
static bool isEqual(const int& LHS, const int& RHS) {
return LHS == RHS;
}
};
// Provide DenseMapInfo for longs.
template<> struct DenseMapInfo<long> {
static inline long getEmptyKey() {
return (1UL << (sizeof(long) * 8 - 1)) - 1UL;
}
static inline long getTombstoneKey() { return getEmptyKey() - 1L; }
static unsigned getHashValue(const long& Val) {
return (unsigned)(Val * 37UL);
}
static bool isEqual(const long& LHS, const long& RHS) {
return LHS == RHS;
}
};
// Provide DenseMapInfo for long longs.
template<> struct DenseMapInfo<long long> {
static inline long long getEmptyKey() { return 0x7fffffffffffffffLL; }
static inline long long getTombstoneKey() { return -0x7fffffffffffffffLL-1; }
static unsigned getHashValue(const long long& Val) {
return (unsigned)(Val * 37ULL);
}
static bool isEqual(const long long& LHS,
const long long& RHS) {
return LHS == RHS;
}
};
// Provide DenseMapInfo for all pairs whose members have info.
template<typename T, typename U>
struct DenseMapInfo<std::pair<T, U> > {
typedef std::pair<T, U> Pair;
typedef DenseMapInfo<T> FirstInfo;
typedef DenseMapInfo<U> SecondInfo;
static inline Pair getEmptyKey() {
return std::make_pair(FirstInfo::getEmptyKey(),
SecondInfo::getEmptyKey());
}
static inline Pair getTombstoneKey() {
return std::make_pair(FirstInfo::getTombstoneKey(),
SecondInfo::getTombstoneKey());
}
static unsigned getHashValue(const Pair& PairVal) {
uint64_t key = (uint64_t)FirstInfo::getHashValue(PairVal.first) << 32
| (uint64_t)SecondInfo::getHashValue(PairVal.second);
key += ~(key << 32);
key ^= (key >> 22);
key += ~(key << 13);
key ^= (key >> 8);
key += (key << 3);
key ^= (key >> 15);
key += ~(key << 27);
key ^= (key >> 31);
return (unsigned)key;
}
static bool isEqual(const Pair &LHS, const Pair &RHS) {
return FirstInfo::isEqual(LHS.first, RHS.first) &&
SecondInfo::isEqual(LHS.second, RHS.second);
}
};
} // end namespace llvm
#endif

View File

@@ -0,0 +1,131 @@
//===- llvm/ADT/DenseSet.h - Dense probed hash table ------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the DenseSet class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_DENSESET_H
#define LLVM_ADT_DENSESET_H
#include "llvm/ADT/DenseMap.h"
namespace llvm {
/// DenseSet - This implements a dense probed hash-table based set.
///
/// FIXME: This is currently implemented directly in terms of DenseMap, this
/// should be optimized later if there is a need.
template<typename ValueT, typename ValueInfoT = DenseMapInfo<ValueT> >
class DenseSet {
typedef DenseMap<ValueT, char, ValueInfoT> MapTy;
MapTy TheMap;
public:
DenseSet(const DenseSet &Other) : TheMap(Other.TheMap) {}
explicit DenseSet(unsigned NumInitBuckets = 0) : TheMap(NumInitBuckets) {}
bool empty() const { return TheMap.empty(); }
unsigned size() const { return TheMap.size(); }
size_t getMemorySize() const { return TheMap.getMemorySize(); }
/// Grow the DenseSet so that it has at least Size buckets. Will not shrink
/// the Size of the set.
void resize(size_t Size) { TheMap.resize(Size); }
void clear() {
TheMap.clear();
}
bool count(const ValueT &V) const {
return TheMap.count(V);
}
bool erase(const ValueT &V) {
return TheMap.erase(V);
}
void swap(DenseSet& RHS) {
TheMap.swap(RHS.TheMap);
}
DenseSet &operator=(const DenseSet &RHS) {
TheMap = RHS.TheMap;
return *this;
}
// Iterators.
class Iterator {
typename MapTy::iterator I;
friend class DenseSet;
public:
typedef typename MapTy::iterator::difference_type difference_type;
typedef ValueT value_type;
typedef value_type *pointer;
typedef value_type &reference;
typedef std::forward_iterator_tag iterator_category;
Iterator(const typename MapTy::iterator &i) : I(i) {}
ValueT& operator*() { return I->first; }
ValueT* operator->() { return &I->first; }
Iterator& operator++() { ++I; return *this; }
bool operator==(const Iterator& X) const { return I == X.I; }
bool operator!=(const Iterator& X) const { return I != X.I; }
};
class ConstIterator {
typename MapTy::const_iterator I;
friend class DenseSet;
public:
typedef typename MapTy::const_iterator::difference_type difference_type;
typedef ValueT value_type;
typedef value_type *pointer;
typedef value_type &reference;
typedef std::forward_iterator_tag iterator_category;
ConstIterator(const typename MapTy::const_iterator &i) : I(i) {}
const ValueT& operator*() { return I->first; }
const ValueT* operator->() { return &I->first; }
ConstIterator& operator++() { ++I; return *this; }
bool operator==(const ConstIterator& X) const { return I == X.I; }
bool operator!=(const ConstIterator& X) const { return I != X.I; }
};
typedef Iterator iterator;
typedef ConstIterator const_iterator;
iterator begin() { return Iterator(TheMap.begin()); }
iterator end() { return Iterator(TheMap.end()); }
const_iterator begin() const { return ConstIterator(TheMap.begin()); }
const_iterator end() const { return ConstIterator(TheMap.end()); }
iterator find(const ValueT &V) { return Iterator(TheMap.find(V)); }
void erase(Iterator I) { return TheMap.erase(I.I); }
void erase(ConstIterator CI) { return TheMap.erase(CI.I); }
std::pair<iterator, bool> insert(const ValueT &V) {
return TheMap.insert(std::make_pair(V, 0));
}
// Range insertion of values.
template<typename InputIt>
void insert(InputIt I, InputIt E) {
for (; I != E; ++I)
insert(*I);
}
};
} // end namespace llvm
#endif

View File

@@ -0,0 +1,268 @@
//===- llvm/ADT/DepthFirstIterator.h - Depth First iterator -----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file builds on the ADT/GraphTraits.h file to build generic depth
// first graph iterator. This file exposes the following functions/types:
//
// df_begin/df_end/df_iterator
// * Normal depth-first iteration - visit a node and then all of its children.
//
// idf_begin/idf_end/idf_iterator
// * Depth-first iteration on the 'inverse' graph.
//
// df_ext_begin/df_ext_end/df_ext_iterator
// * Normal depth-first iteration - visit a node and then all of its children.
// This iterator stores the 'visited' set in an external set, which allows
// it to be more efficient, and allows external clients to use the set for
// other purposes.
//
// idf_ext_begin/idf_ext_end/idf_ext_iterator
// * Depth-first iteration on the 'inverse' graph.
// This iterator stores the 'visited' set in an external set, which allows
// it to be more efficient, and allows external clients to use the set for
// other purposes.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_DEPTHFIRSTITERATOR_H
#define LLVM_ADT_DEPTHFIRSTITERATOR_H
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/SmallPtrSet.h"
#include <set>
#include <vector>
namespace llvm {
// df_iterator_storage - A private class which is used to figure out where to
// store the visited set.
template<class SetType, bool External> // Non-external set
class df_iterator_storage {
public:
SetType Visited;
};
template<class SetType>
class df_iterator_storage<SetType, true> {
public:
df_iterator_storage(SetType &VSet) : Visited(VSet) {}
df_iterator_storage(const df_iterator_storage &S) : Visited(S.Visited) {}
SetType &Visited;
};
// Generic Depth First Iterator
template<class GraphT,
class SetType = llvm::SmallPtrSet<typename GraphTraits<GraphT>::NodeType*, 8>,
bool ExtStorage = false, class GT = GraphTraits<GraphT> >
class df_iterator : public std::iterator<std::forward_iterator_tag,
typename GT::NodeType, ptrdiff_t>,
public df_iterator_storage<SetType, ExtStorage> {
typedef std::iterator<std::forward_iterator_tag,
typename GT::NodeType, ptrdiff_t> super;
typedef typename GT::NodeType NodeType;
typedef typename GT::ChildIteratorType ChildItTy;
typedef PointerIntPair<NodeType*, 1> PointerIntTy;
// VisitStack - Used to maintain the ordering. Top = current block
// First element is node pointer, second is the 'next child' to visit
// if the int in PointerIntTy is 0, the 'next child' to visit is invalid
std::vector<std::pair<PointerIntTy, ChildItTy> > VisitStack;
private:
inline df_iterator(NodeType *Node) {
this->Visited.insert(Node);
VisitStack.push_back(std::make_pair(PointerIntTy(Node, 0),
GT::child_begin(Node)));
}
inline df_iterator() {
// End is when stack is empty
}
inline df_iterator(NodeType *Node, SetType &S)
: df_iterator_storage<SetType, ExtStorage>(S) {
if (!S.count(Node)) {
VisitStack.push_back(std::make_pair(PointerIntTy(Node, 0),
GT::child_begin(Node)));
this->Visited.insert(Node);
}
}
inline df_iterator(SetType &S)
: df_iterator_storage<SetType, ExtStorage>(S) {
// End is when stack is empty
}
inline void toNext() {
do {
std::pair<PointerIntTy, ChildItTy> &Top = VisitStack.back();
NodeType *Node = Top.first.getPointer();
ChildItTy &It = Top.second;
if (!Top.first.getInt()) {
// now retrieve the real begin of the children before we dive in
It = GT::child_begin(Node);
Top.first.setInt(1);
}
while (It != GT::child_end(Node)) {
NodeType *Next = *It++;
// Has our next sibling been visited?
if (Next && !this->Visited.count(Next)) {
// No, do it now.
this->Visited.insert(Next);
VisitStack.push_back(std::make_pair(PointerIntTy(Next, 0),
GT::child_begin(Next)));
return;
}
}
// Oops, ran out of successors... go up a level on the stack.
VisitStack.pop_back();
} while (!VisitStack.empty());
}
public:
typedef typename super::pointer pointer;
typedef df_iterator<GraphT, SetType, ExtStorage, GT> _Self;
// Provide static begin and end methods as our public "constructors"
static inline _Self begin(const GraphT& G) {
return _Self(GT::getEntryNode(G));
}
static inline _Self end(const GraphT& G) { return _Self(); }
// Static begin and end methods as our public ctors for external iterators
static inline _Self begin(const GraphT& G, SetType &S) {
return _Self(GT::getEntryNode(G), S);
}
static inline _Self end(const GraphT& G, SetType &S) { return _Self(S); }
inline bool operator==(const _Self& x) const {
return VisitStack == x.VisitStack;
}
inline bool operator!=(const _Self& x) const { return !operator==(x); }
inline pointer operator*() const {
return VisitStack.back().first.getPointer();
}
// This is a nonstandard operator-> that dereferences the pointer an extra
// time... so that you can actually call methods ON the Node, because
// the contained type is a pointer. This allows BBIt->getTerminator() f.e.
//
inline NodeType *operator->() const { return operator*(); }
inline _Self& operator++() { // Preincrement
toNext();
return *this;
}
// skips all children of the current node and traverses to next node
//
inline _Self& skipChildren() {
VisitStack.pop_back();
if (!VisitStack.empty())
toNext();
return *this;
}
inline _Self operator++(int) { // Postincrement
_Self tmp = *this; ++*this; return tmp;
}
// nodeVisited - return true if this iterator has already visited the
// specified node. This is public, and will probably be used to iterate over
// nodes that a depth first iteration did not find: ie unreachable nodes.
//
inline bool nodeVisited(NodeType *Node) const {
return this->Visited.count(Node) != 0;
}
/// getPathLength - Return the length of the path from the entry node to the
/// current node, counting both nodes.
unsigned getPathLength() const { return VisitStack.size(); }
/// getPath - Return the n'th node in the path from the entry node to the
/// current node.
NodeType *getPath(unsigned n) const {
return VisitStack[n].first.getPointer();
}
};
// Provide global constructors that automatically figure out correct types...
//
template <class T>
df_iterator<T> df_begin(const T& G) {
return df_iterator<T>::begin(G);
}
template <class T>
df_iterator<T> df_end(const T& G) {
return df_iterator<T>::end(G);
}
// Provide global definitions of external depth first iterators...
template <class T, class SetTy = std::set<typename GraphTraits<T>::NodeType*> >
struct df_ext_iterator : public df_iterator<T, SetTy, true> {
df_ext_iterator(const df_iterator<T, SetTy, true> &V)
: df_iterator<T, SetTy, true>(V) {}
};
template <class T, class SetTy>
df_ext_iterator<T, SetTy> df_ext_begin(const T& G, SetTy &S) {
return df_ext_iterator<T, SetTy>::begin(G, S);
}
template <class T, class SetTy>
df_ext_iterator<T, SetTy> df_ext_end(const T& G, SetTy &S) {
return df_ext_iterator<T, SetTy>::end(G, S);
}
// Provide global definitions of inverse depth first iterators...
template <class T,
class SetTy = llvm::SmallPtrSet<typename GraphTraits<T>::NodeType*, 8>,
bool External = false>
struct idf_iterator : public df_iterator<Inverse<T>, SetTy, External> {
idf_iterator(const df_iterator<Inverse<T>, SetTy, External> &V)
: df_iterator<Inverse<T>, SetTy, External>(V) {}
};
template <class T>
idf_iterator<T> idf_begin(const T& G) {
return idf_iterator<T>::begin(Inverse<T>(G));
}
template <class T>
idf_iterator<T> idf_end(const T& G){
return idf_iterator<T>::end(Inverse<T>(G));
}
// Provide global definitions of external inverse depth first iterators...
template <class T, class SetTy = std::set<typename GraphTraits<T>::NodeType*> >
struct idf_ext_iterator : public idf_iterator<T, SetTy, true> {
idf_ext_iterator(const idf_iterator<T, SetTy, true> &V)
: idf_iterator<T, SetTy, true>(V) {}
idf_ext_iterator(const df_iterator<Inverse<T>, SetTy, true> &V)
: idf_iterator<T, SetTy, true>(V) {}
};
template <class T, class SetTy>
idf_ext_iterator<T, SetTy> idf_ext_begin(const T& G, SetTy &S) {
return idf_ext_iterator<T, SetTy>::begin(Inverse<T>(G), S);
}
template <class T, class SetTy>
idf_ext_iterator<T, SetTy> idf_ext_end(const T& G, SetTy &S) {
return idf_ext_iterator<T, SetTy>::end(Inverse<T>(G), S);
}
} // End llvm namespace
#endif

View File

@@ -0,0 +1,283 @@
//===-- llvm/ADT/EquivalenceClasses.h - Generic Equiv. Classes --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Generic implementation of equivalence classes through the use Tarjan's
// efficient union-find algorithm.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_EQUIVALENCECLASSES_H
#define LLVM_ADT_EQUIVALENCECLASSES_H
#include "llvm/Support/DataTypes.h"
#include <cassert>
#include <set>
namespace llvm {
/// EquivalenceClasses - This represents a collection of equivalence classes and
/// supports three efficient operations: insert an element into a class of its
/// own, union two classes, and find the class for a given element. In
/// addition to these modification methods, it is possible to iterate over all
/// of the equivalence classes and all of the elements in a class.
///
/// This implementation is an efficient implementation that only stores one copy
/// of the element being indexed per entry in the set, and allows any arbitrary
/// type to be indexed (as long as it can be ordered with operator<).
///
/// Here is a simple example using integers:
///
/// \code
/// EquivalenceClasses<int> EC;
/// EC.unionSets(1, 2); // insert 1, 2 into the same set
/// EC.insert(4); EC.insert(5); // insert 4, 5 into own sets
/// EC.unionSets(5, 1); // merge the set for 1 with 5's set.
///
/// for (EquivalenceClasses<int>::iterator I = EC.begin(), E = EC.end();
/// I != E; ++I) { // Iterate over all of the equivalence sets.
/// if (!I->isLeader()) continue; // Ignore non-leader sets.
/// for (EquivalenceClasses<int>::member_iterator MI = EC.member_begin(I);
/// MI != EC.member_end(); ++MI) // Loop over members in this set.
/// cerr << *MI << " "; // Print member.
/// cerr << "\n"; // Finish set.
/// }
/// \endcode
///
/// This example prints:
/// 4
/// 5 1 2
///
template <class ElemTy>
class EquivalenceClasses {
/// ECValue - The EquivalenceClasses data structure is just a set of these.
/// Each of these represents a relation for a value. First it stores the
/// value itself, which provides the ordering that the set queries. Next, it
/// provides a "next pointer", which is used to enumerate all of the elements
/// in the unioned set. Finally, it defines either a "end of list pointer" or
/// "leader pointer" depending on whether the value itself is a leader. A
/// "leader pointer" points to the node that is the leader for this element,
/// if the node is not a leader. A "end of list pointer" points to the last
/// node in the list of members of this list. Whether or not a node is a
/// leader is determined by a bit stolen from one of the pointers.
class ECValue {
friend class EquivalenceClasses;
mutable const ECValue *Leader, *Next;
ElemTy Data;
// ECValue ctor - Start out with EndOfList pointing to this node, Next is
// Null, isLeader = true.
ECValue(const ElemTy &Elt)
: Leader(this), Next((ECValue*)(intptr_t)1), Data(Elt) {}
const ECValue *getLeader() const {
if (isLeader()) return this;
if (Leader->isLeader()) return Leader;
// Path compression.
return Leader = Leader->getLeader();
}
const ECValue *getEndOfList() const {
assert(isLeader() && "Cannot get the end of a list for a non-leader!");
return Leader;
}
void setNext(const ECValue *NewNext) const {
assert(getNext() == 0 && "Already has a next pointer!");
Next = (const ECValue*)((intptr_t)NewNext | (intptr_t)isLeader());
}
public:
ECValue(const ECValue &RHS) : Leader(this), Next((ECValue*)(intptr_t)1),
Data(RHS.Data) {
// Only support copying of singleton nodes.
assert(RHS.isLeader() && RHS.getNext() == 0 && "Not a singleton!");
}
bool operator<(const ECValue &UFN) const { return Data < UFN.Data; }
bool isLeader() const { return (intptr_t)Next & 1; }
const ElemTy &getData() const { return Data; }
const ECValue *getNext() const {
return (ECValue*)((intptr_t)Next & ~(intptr_t)1);
}
template<typename T>
bool operator<(const T &Val) const { return Data < Val; }
};
/// TheMapping - This implicitly provides a mapping from ElemTy values to the
/// ECValues, it just keeps the key as part of the value.
std::set<ECValue> TheMapping;
public:
EquivalenceClasses() {}
EquivalenceClasses(const EquivalenceClasses &RHS) {
operator=(RHS);
}
const EquivalenceClasses &operator=(const EquivalenceClasses &RHS) {
TheMapping.clear();
for (iterator I = RHS.begin(), E = RHS.end(); I != E; ++I)
if (I->isLeader()) {
member_iterator MI = RHS.member_begin(I);
member_iterator LeaderIt = member_begin(insert(*MI));
for (++MI; MI != member_end(); ++MI)
unionSets(LeaderIt, member_begin(insert(*MI)));
}
return *this;
}
//===--------------------------------------------------------------------===//
// Inspection methods
//
/// iterator* - Provides a way to iterate over all values in the set.
typedef typename std::set<ECValue>::const_iterator iterator;
iterator begin() const { return TheMapping.begin(); }
iterator end() const { return TheMapping.end(); }
bool empty() const { return TheMapping.empty(); }
/// member_* Iterate over the members of an equivalence class.
///
class member_iterator;
member_iterator member_begin(iterator I) const {
// Only leaders provide anything to iterate over.
return member_iterator(I->isLeader() ? &*I : 0);
}
member_iterator member_end() const {
return member_iterator(0);
}
/// findValue - Return an iterator to the specified value. If it does not
/// exist, end() is returned.
iterator findValue(const ElemTy &V) const {
return TheMapping.find(V);
}
/// getLeaderValue - Return the leader for the specified value that is in the
/// set. It is an error to call this method for a value that is not yet in
/// the set. For that, call getOrInsertLeaderValue(V).
const ElemTy &getLeaderValue(const ElemTy &V) const {
member_iterator MI = findLeader(V);
assert(MI != member_end() && "Value is not in the set!");
return *MI;
}
/// getOrInsertLeaderValue - Return the leader for the specified value that is
/// in the set. If the member is not in the set, it is inserted, then
/// returned.
const ElemTy &getOrInsertLeaderValue(const ElemTy &V) {
member_iterator MI = findLeader(insert(V));
assert(MI != member_end() && "Value is not in the set!");
return *MI;
}
/// getNumClasses - Return the number of equivalence classes in this set.
/// Note that this is a linear time operation.
unsigned getNumClasses() const {
unsigned NC = 0;
for (iterator I = begin(), E = end(); I != E; ++I)
if (I->isLeader()) ++NC;
return NC;
}
//===--------------------------------------------------------------------===//
// Mutation methods
/// insert - Insert a new value into the union/find set, ignoring the request
/// if the value already exists.
iterator insert(const ElemTy &Data) {
return TheMapping.insert(ECValue(Data)).first;
}
/// findLeader - Given a value in the set, return a member iterator for the
/// equivalence class it is in. This does the path-compression part that
/// makes union-find "union findy". This returns an end iterator if the value
/// is not in the equivalence class.
///
member_iterator findLeader(iterator I) const {
if (I == TheMapping.end()) return member_end();
return member_iterator(I->getLeader());
}
member_iterator findLeader(const ElemTy &V) const {
return findLeader(TheMapping.find(V));
}
/// union - Merge the two equivalence sets for the specified values, inserting
/// them if they do not already exist in the equivalence set.
member_iterator unionSets(const ElemTy &V1, const ElemTy &V2) {
iterator V1I = insert(V1), V2I = insert(V2);
return unionSets(findLeader(V1I), findLeader(V2I));
}
member_iterator unionSets(member_iterator L1, member_iterator L2) {
assert(L1 != member_end() && L2 != member_end() && "Illegal inputs!");
if (L1 == L2) return L1; // Unifying the same two sets, noop.
// Otherwise, this is a real union operation. Set the end of the L1 list to
// point to the L2 leader node.
const ECValue &L1LV = *L1.Node, &L2LV = *L2.Node;
L1LV.getEndOfList()->setNext(&L2LV);
// Update L1LV's end of list pointer.
L1LV.Leader = L2LV.getEndOfList();
// Clear L2's leader flag:
L2LV.Next = L2LV.getNext();
// L2's leader is now L1.
L2LV.Leader = &L1LV;
return L1;
}
class member_iterator : public std::iterator<std::forward_iterator_tag,
const ElemTy, ptrdiff_t> {
typedef std::iterator<std::forward_iterator_tag,
const ElemTy, ptrdiff_t> super;
const ECValue *Node;
friend class EquivalenceClasses;
public:
typedef size_t size_type;
typedef typename super::pointer pointer;
typedef typename super::reference reference;
explicit member_iterator() {}
explicit member_iterator(const ECValue *N) : Node(N) {}
member_iterator(const member_iterator &I) : Node(I.Node) {}
reference operator*() const {
assert(Node != 0 && "Dereferencing end()!");
return Node->getData();
}
reference operator->() const { return operator*(); }
member_iterator &operator++() {
assert(Node != 0 && "++'d off the end of the list!");
Node = Node->getNext();
return *this;
}
member_iterator operator++(int) { // postincrement operators.
member_iterator tmp = *this;
++*this;
return tmp;
}
bool operator==(const member_iterator &RHS) const {
return Node == RHS.Node;
}
bool operator!=(const member_iterator &RHS) const {
return Node != RHS.Node;
}
};
};
} // End llvm namespace
#endif

View File

@@ -0,0 +1,794 @@
//===-- llvm/ADT/FoldingSet.h - Uniquing Hash Set ---------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a hash set that can be used to remove duplication of nodes
// in a graph. This code was originally created by Chris Lattner for use with
// SelectionDAGCSEMap, but was isolated to provide use across the llvm code set.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_FOLDINGSET_H
#define LLVM_ADT_FOLDINGSET_H
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/DataTypes.h"
namespace llvm {
class APFloat;
class APInt;
class BumpPtrAllocator;
/// This folding set used for two purposes:
/// 1. Given information about a node we want to create, look up the unique
/// instance of the node in the set. If the node already exists, return
/// it, otherwise return the bucket it should be inserted into.
/// 2. Given a node that has already been created, remove it from the set.
///
/// This class is implemented as a single-link chained hash table, where the
/// "buckets" are actually the nodes themselves (the next pointer is in the
/// node). The last node points back to the bucket to simplify node removal.
///
/// Any node that is to be included in the folding set must be a subclass of
/// FoldingSetNode. The node class must also define a Profile method used to
/// establish the unique bits of data for the node. The Profile method is
/// passed a FoldingSetNodeID object which is used to gather the bits. Just
/// call one of the Add* functions defined in the FoldingSetImpl::NodeID class.
/// NOTE: That the folding set does not own the nodes and it is the
/// responsibility of the user to dispose of the nodes.
///
/// Eg.
/// class MyNode : public FoldingSetNode {
/// private:
/// std::string Name;
/// unsigned Value;
/// public:
/// MyNode(const char *N, unsigned V) : Name(N), Value(V) {}
/// ...
/// void Profile(FoldingSetNodeID &ID) const {
/// ID.AddString(Name);
/// ID.AddInteger(Value);
/// }
/// ...
/// };
///
/// To define the folding set itself use the FoldingSet template;
///
/// Eg.
/// FoldingSet<MyNode> MyFoldingSet;
///
/// Four public methods are available to manipulate the folding set;
///
/// 1) If you have an existing node that you want add to the set but unsure
/// that the node might already exist then call;
///
/// MyNode *M = MyFoldingSet.GetOrInsertNode(N);
///
/// If The result is equal to the input then the node has been inserted.
/// Otherwise, the result is the node existing in the folding set, and the
/// input can be discarded (use the result instead.)
///
/// 2) If you are ready to construct a node but want to check if it already
/// exists, then call FindNodeOrInsertPos with a FoldingSetNodeID of the bits to
/// check;
///
/// FoldingSetNodeID ID;
/// ID.AddString(Name);
/// ID.AddInteger(Value);
/// void *InsertPoint;
///
/// MyNode *M = MyFoldingSet.FindNodeOrInsertPos(ID, InsertPoint);
///
/// If found then M with be non-NULL, else InsertPoint will point to where it
/// should be inserted using InsertNode.
///
/// 3) If you get a NULL result from FindNodeOrInsertPos then you can as a new
/// node with FindNodeOrInsertPos;
///
/// InsertNode(N, InsertPoint);
///
/// 4) Finally, if you want to remove a node from the folding set call;
///
/// bool WasRemoved = RemoveNode(N);
///
/// The result indicates whether the node existed in the folding set.
class FoldingSetNodeID;
//===----------------------------------------------------------------------===//
/// FoldingSetImpl - Implements the folding set functionality. The main
/// structure is an array of buckets. Each bucket is indexed by the hash of
/// the nodes it contains. The bucket itself points to the nodes contained
/// in the bucket via a singly linked list. The last node in the list points
/// back to the bucket to facilitate node removal.
///
class FoldingSetImpl {
protected:
/// Buckets - Array of bucket chains.
///
void **Buckets;
/// NumBuckets - Length of the Buckets array. Always a power of 2.
///
unsigned NumBuckets;
/// NumNodes - Number of nodes in the folding set. Growth occurs when NumNodes
/// is greater than twice the number of buckets.
unsigned NumNodes;
public:
explicit FoldingSetImpl(unsigned Log2InitSize = 6);
virtual ~FoldingSetImpl();
//===--------------------------------------------------------------------===//
/// Node - This class is used to maintain the singly linked bucket list in
/// a folding set.
///
class Node {
private:
// NextInFoldingSetBucket - next link in the bucket list.
void *NextInFoldingSetBucket;
public:
Node() : NextInFoldingSetBucket(0) {}
// Accessors
void *getNextInBucket() const { return NextInFoldingSetBucket; }
void SetNextInBucket(void *N) { NextInFoldingSetBucket = N; }
};
/// clear - Remove all nodes from the folding set.
void clear();
/// RemoveNode - Remove a node from the folding set, returning true if one
/// was removed or false if the node was not in the folding set.
bool RemoveNode(Node *N);
/// GetOrInsertNode - If there is an existing simple Node exactly
/// equal to the specified node, return it. Otherwise, insert 'N' and return
/// it instead.
Node *GetOrInsertNode(Node *N);
/// FindNodeOrInsertPos - Look up the node specified by ID. If it exists,
/// return it. If not, return the insertion token that will make insertion
/// faster.
Node *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos);
/// InsertNode - Insert the specified node into the folding set, knowing that
/// it is not already in the folding set. InsertPos must be obtained from
/// FindNodeOrInsertPos.
void InsertNode(Node *N, void *InsertPos);
/// InsertNode - Insert the specified node into the folding set, knowing that
/// it is not already in the folding set.
void InsertNode(Node *N) {
Node *Inserted = GetOrInsertNode(N);
(void)Inserted;
assert(Inserted == N && "Node already inserted!");
}
/// size - Returns the number of nodes in the folding set.
unsigned size() const { return NumNodes; }
/// empty - Returns true if there are no nodes in the folding set.
bool empty() const { return NumNodes == 0; }
private:
/// GrowHashTable - Double the size of the hash table and rehash everything.
///
void GrowHashTable();
protected:
/// GetNodeProfile - Instantiations of the FoldingSet template implement
/// this function to gather data bits for the given node.
virtual void GetNodeProfile(Node *N, FoldingSetNodeID &ID) const = 0;
/// NodeEquals - Instantiations of the FoldingSet template implement
/// this function to compare the given node with the given ID.
virtual bool NodeEquals(Node *N, const FoldingSetNodeID &ID, unsigned IDHash,
FoldingSetNodeID &TempID) const=0;
/// ComputeNodeHash - Instantiations of the FoldingSet template implement
/// this function to compute a hash value for the given node.
virtual unsigned ComputeNodeHash(Node *N, FoldingSetNodeID &TempID) const = 0;
};
//===----------------------------------------------------------------------===//
template<typename T> struct FoldingSetTrait;
/// DefaultFoldingSetTrait - This class provides default implementations
/// for FoldingSetTrait implementations.
///
template<typename T> struct DefaultFoldingSetTrait {
static void Profile(const T &X, FoldingSetNodeID &ID) {
X.Profile(ID);
}
static void Profile(T &X, FoldingSetNodeID &ID) {
X.Profile(ID);
}
// Equals - Test if the profile for X would match ID, using TempID
// to compute a temporary ID if necessary. The default implementation
// just calls Profile and does a regular comparison. Implementations
// can override this to provide more efficient implementations.
static inline bool Equals(T &X, const FoldingSetNodeID &ID, unsigned IDHash,
FoldingSetNodeID &TempID);
// ComputeHash - Compute a hash value for X, using TempID to
// compute a temporary ID if necessary. The default implementation
// just calls Profile and does a regular hash computation.
// Implementations can override this to provide more efficient
// implementations.
static inline unsigned ComputeHash(T &X, FoldingSetNodeID &TempID);
};
/// FoldingSetTrait - This trait class is used to define behavior of how
/// to "profile" (in the FoldingSet parlance) an object of a given type.
/// The default behavior is to invoke a 'Profile' method on an object, but
/// through template specialization the behavior can be tailored for specific
/// types. Combined with the FoldingSetNodeWrapper class, one can add objects
/// to FoldingSets that were not originally designed to have that behavior.
template<typename T> struct FoldingSetTrait
: public DefaultFoldingSetTrait<T> {};
template<typename T, typename Ctx> struct ContextualFoldingSetTrait;
/// DefaultContextualFoldingSetTrait - Like DefaultFoldingSetTrait, but
/// for ContextualFoldingSets.
template<typename T, typename Ctx>
struct DefaultContextualFoldingSetTrait {
static void Profile(T &X, FoldingSetNodeID &ID, Ctx Context) {
X.Profile(ID, Context);
}
static inline bool Equals(T &X, const FoldingSetNodeID &ID, unsigned IDHash,
FoldingSetNodeID &TempID, Ctx Context);
static inline unsigned ComputeHash(T &X, FoldingSetNodeID &TempID,
Ctx Context);
};
/// ContextualFoldingSetTrait - Like FoldingSetTrait, but for
/// ContextualFoldingSets.
template<typename T, typename Ctx> struct ContextualFoldingSetTrait
: public DefaultContextualFoldingSetTrait<T, Ctx> {};
//===--------------------------------------------------------------------===//
/// FoldingSetNodeIDRef - This class describes a reference to an interned
/// FoldingSetNodeID, which can be a useful to store node id data rather
/// than using plain FoldingSetNodeIDs, since the 32-element SmallVector
/// is often much larger than necessary, and the possibility of heap
/// allocation means it requires a non-trivial destructor call.
class FoldingSetNodeIDRef {
const unsigned *Data;
size_t Size;
public:
FoldingSetNodeIDRef() : Data(0), Size(0) {}
FoldingSetNodeIDRef(const unsigned *D, size_t S) : Data(D), Size(S) {}
/// ComputeHash - Compute a strong hash value for this FoldingSetNodeIDRef,
/// used to lookup the node in the FoldingSetImpl.
unsigned ComputeHash() const;
bool operator==(FoldingSetNodeIDRef) const;
/// Used to compare the "ordering" of two nodes as defined by the
/// profiled bits and their ordering defined by memcmp().
bool operator<(FoldingSetNodeIDRef) const;
const unsigned *getData() const { return Data; }
size_t getSize() const { return Size; }
};
//===--------------------------------------------------------------------===//
/// FoldingSetNodeID - This class is used to gather all the unique data bits of
/// a node. When all the bits are gathered this class is used to produce a
/// hash value for the node.
///
class FoldingSetNodeID {
/// Bits - Vector of all the data bits that make the node unique.
/// Use a SmallVector to avoid a heap allocation in the common case.
SmallVector<unsigned, 32> Bits;
public:
FoldingSetNodeID() {}
FoldingSetNodeID(FoldingSetNodeIDRef Ref)
: Bits(Ref.getData(), Ref.getData() + Ref.getSize()) {}
/// Add* - Add various data types to Bit data.
///
void AddPointer(const void *Ptr);
void AddInteger(signed I);
void AddInteger(unsigned I);
void AddInteger(long I);
void AddInteger(unsigned long I);
void AddInteger(long long I);
void AddInteger(unsigned long long I);
void AddBoolean(bool B) { AddInteger(B ? 1U : 0U); }
void AddString(StringRef String);
void AddNodeID(const FoldingSetNodeID &ID);
template <typename T>
inline void Add(const T &x) { FoldingSetTrait<T>::Profile(x, *this); }
/// clear - Clear the accumulated profile, allowing this FoldingSetNodeID
/// object to be used to compute a new profile.
inline void clear() { Bits.clear(); }
/// ComputeHash - Compute a strong hash value for this FoldingSetNodeID, used
/// to lookup the node in the FoldingSetImpl.
unsigned ComputeHash() const;
/// operator== - Used to compare two nodes to each other.
///
bool operator==(const FoldingSetNodeID &RHS) const;
bool operator==(const FoldingSetNodeIDRef RHS) const;
/// Used to compare the "ordering" of two nodes as defined by the
/// profiled bits and their ordering defined by memcmp().
bool operator<(const FoldingSetNodeID &RHS) const;
bool operator<(const FoldingSetNodeIDRef RHS) const;
/// Intern - Copy this node's data to a memory region allocated from the
/// given allocator and return a FoldingSetNodeIDRef describing the
/// interned data.
FoldingSetNodeIDRef Intern(BumpPtrAllocator &Allocator) const;
};
// Convenience type to hide the implementation of the folding set.
typedef FoldingSetImpl::Node FoldingSetNode;
template<class T> class FoldingSetIterator;
template<class T> class FoldingSetBucketIterator;
// Definitions of FoldingSetTrait and ContextualFoldingSetTrait functions, which
// require the definition of FoldingSetNodeID.
template<typename T>
inline bool
DefaultFoldingSetTrait<T>::Equals(T &X, const FoldingSetNodeID &ID,
unsigned IDHash, FoldingSetNodeID &TempID) {
FoldingSetTrait<T>::Profile(X, TempID);
return TempID == ID;
}
template<typename T>
inline unsigned
DefaultFoldingSetTrait<T>::ComputeHash(T &X, FoldingSetNodeID &TempID) {
FoldingSetTrait<T>::Profile(X, TempID);
return TempID.ComputeHash();
}
template<typename T, typename Ctx>
inline bool
DefaultContextualFoldingSetTrait<T, Ctx>::Equals(T &X,
const FoldingSetNodeID &ID,
unsigned IDHash,
FoldingSetNodeID &TempID,
Ctx Context) {
ContextualFoldingSetTrait<T, Ctx>::Profile(X, TempID, Context);
return TempID == ID;
}
template<typename T, typename Ctx>
inline unsigned
DefaultContextualFoldingSetTrait<T, Ctx>::ComputeHash(T &X,
FoldingSetNodeID &TempID,
Ctx Context) {
ContextualFoldingSetTrait<T, Ctx>::Profile(X, TempID, Context);
return TempID.ComputeHash();
}
//===----------------------------------------------------------------------===//
/// FoldingSet - This template class is used to instantiate a specialized
/// implementation of the folding set to the node class T. T must be a
/// subclass of FoldingSetNode and implement a Profile function.
///
template<class T> class FoldingSet : public FoldingSetImpl {
private:
/// GetNodeProfile - Each instantiatation of the FoldingSet needs to provide a
/// way to convert nodes into a unique specifier.
virtual void GetNodeProfile(Node *N, FoldingSetNodeID &ID) const {
T *TN = static_cast<T *>(N);
FoldingSetTrait<T>::Profile(*TN, ID);
}
/// NodeEquals - Instantiations may optionally provide a way to compare a
/// node with a specified ID.
virtual bool NodeEquals(Node *N, const FoldingSetNodeID &ID, unsigned IDHash,
FoldingSetNodeID &TempID) const {
T *TN = static_cast<T *>(N);
return FoldingSetTrait<T>::Equals(*TN, ID, IDHash, TempID);
}
/// ComputeNodeHash - Instantiations may optionally provide a way to compute a
/// hash value directly from a node.
virtual unsigned ComputeNodeHash(Node *N, FoldingSetNodeID &TempID) const {
T *TN = static_cast<T *>(N);
return FoldingSetTrait<T>::ComputeHash(*TN, TempID);
}
public:
explicit FoldingSet(unsigned Log2InitSize = 6)
: FoldingSetImpl(Log2InitSize)
{}
typedef FoldingSetIterator<T> iterator;
iterator begin() { return iterator(Buckets); }
iterator end() { return iterator(Buckets+NumBuckets); }
typedef FoldingSetIterator<const T> const_iterator;
const_iterator begin() const { return const_iterator(Buckets); }
const_iterator end() const { return const_iterator(Buckets+NumBuckets); }
typedef FoldingSetBucketIterator<T> bucket_iterator;
bucket_iterator bucket_begin(unsigned hash) {
return bucket_iterator(Buckets + (hash & (NumBuckets-1)));
}
bucket_iterator bucket_end(unsigned hash) {
return bucket_iterator(Buckets + (hash & (NumBuckets-1)), true);
}
/// GetOrInsertNode - If there is an existing simple Node exactly
/// equal to the specified node, return it. Otherwise, insert 'N' and
/// return it instead.
T *GetOrInsertNode(Node *N) {
return static_cast<T *>(FoldingSetImpl::GetOrInsertNode(N));
}
/// FindNodeOrInsertPos - Look up the node specified by ID. If it exists,
/// return it. If not, return the insertion token that will make insertion
/// faster.
T *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) {
return static_cast<T *>(FoldingSetImpl::FindNodeOrInsertPos(ID, InsertPos));
}
};
//===----------------------------------------------------------------------===//
/// ContextualFoldingSet - This template class is a further refinement
/// of FoldingSet which provides a context argument when calling
/// Profile on its nodes. Currently, that argument is fixed at
/// initialization time.
///
/// T must be a subclass of FoldingSetNode and implement a Profile
/// function with signature
/// void Profile(llvm::FoldingSetNodeID &, Ctx);
template <class T, class Ctx>
class ContextualFoldingSet : public FoldingSetImpl {
// Unfortunately, this can't derive from FoldingSet<T> because the
// construction vtable for FoldingSet<T> requires
// FoldingSet<T>::GetNodeProfile to be instantiated, which in turn
// requires a single-argument T::Profile().
private:
Ctx Context;
/// GetNodeProfile - Each instantiatation of the FoldingSet needs to provide a
/// way to convert nodes into a unique specifier.
virtual void GetNodeProfile(FoldingSetImpl::Node *N,
FoldingSetNodeID &ID) const {
T *TN = static_cast<T *>(N);
ContextualFoldingSetTrait<T, Ctx>::Profile(*TN, ID, Context);
}
virtual bool NodeEquals(FoldingSetImpl::Node *N,
const FoldingSetNodeID &ID, unsigned IDHash,
FoldingSetNodeID &TempID) const {
T *TN = static_cast<T *>(N);
return ContextualFoldingSetTrait<T, Ctx>::Equals(*TN, ID, IDHash, TempID,
Context);
}
virtual unsigned ComputeNodeHash(FoldingSetImpl::Node *N,
FoldingSetNodeID &TempID) const {
T *TN = static_cast<T *>(N);
return ContextualFoldingSetTrait<T, Ctx>::ComputeHash(*TN, TempID, Context);
}
public:
explicit ContextualFoldingSet(Ctx Context, unsigned Log2InitSize = 6)
: FoldingSetImpl(Log2InitSize), Context(Context)
{}
Ctx getContext() const { return Context; }
typedef FoldingSetIterator<T> iterator;
iterator begin() { return iterator(Buckets); }
iterator end() { return iterator(Buckets+NumBuckets); }
typedef FoldingSetIterator<const T> const_iterator;
const_iterator begin() const { return const_iterator(Buckets); }
const_iterator end() const { return const_iterator(Buckets+NumBuckets); }
typedef FoldingSetBucketIterator<T> bucket_iterator;
bucket_iterator bucket_begin(unsigned hash) {
return bucket_iterator(Buckets + (hash & (NumBuckets-1)));
}
bucket_iterator bucket_end(unsigned hash) {
return bucket_iterator(Buckets + (hash & (NumBuckets-1)), true);
}
/// GetOrInsertNode - If there is an existing simple Node exactly
/// equal to the specified node, return it. Otherwise, insert 'N'
/// and return it instead.
T *GetOrInsertNode(Node *N) {
return static_cast<T *>(FoldingSetImpl::GetOrInsertNode(N));
}
/// FindNodeOrInsertPos - Look up the node specified by ID. If it
/// exists, return it. If not, return the insertion token that will
/// make insertion faster.
T *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) {
return static_cast<T *>(FoldingSetImpl::FindNodeOrInsertPos(ID, InsertPos));
}
};
//===----------------------------------------------------------------------===//
/// FoldingSetVectorIterator - This implements an iterator for
/// FoldingSetVector. It is only necessary because FoldingSetIterator provides
/// a value_type of T, while the vector in FoldingSetVector exposes
/// a value_type of T*. Fortunately, FoldingSetIterator doesn't expose very
/// much besides operator* and operator->, so we just wrap the inner vector
/// iterator and perform the extra dereference.
template <class T, class VectorIteratorT>
class FoldingSetVectorIterator {
// Provide a typedef to workaround the lack of correct injected class name
// support in older GCCs.
typedef FoldingSetVectorIterator<T, VectorIteratorT> SelfT;
VectorIteratorT Iterator;
public:
FoldingSetVectorIterator(VectorIteratorT I) : Iterator(I) {}
bool operator==(const SelfT &RHS) const {
return Iterator == RHS.Iterator;
}
bool operator!=(const SelfT &RHS) const {
return Iterator != RHS.Iterator;
}
T &operator*() const { return **Iterator; }
T *operator->() const { return *Iterator; }
inline SelfT &operator++() {
++Iterator;
return *this;
}
SelfT operator++(int) {
SelfT tmp = *this;
++*this;
return tmp;
}
};
//===----------------------------------------------------------------------===//
/// FoldingSetVector - This template class combines a FoldingSet and a vector
/// to provide the interface of FoldingSet but with deterministic iteration
/// order based on the insertion order. T must be a subclass of FoldingSetNode
/// and implement a Profile function.
template <class T, class VectorT = SmallVector<T*, 8> >
class FoldingSetVector {
FoldingSet<T> Set;
VectorT Vector;
public:
explicit FoldingSetVector(unsigned Log2InitSize = 6)
: Set(Log2InitSize) {
}
typedef FoldingSetVectorIterator<T, typename VectorT::iterator> iterator;
iterator begin() { return Vector.begin(); }
iterator end() { return Vector.end(); }
typedef FoldingSetVectorIterator<const T, typename VectorT::const_iterator>
const_iterator;
const_iterator begin() const { return Vector.begin(); }
const_iterator end() const { return Vector.end(); }
/// clear - Remove all nodes from the folding set.
void clear() { Set.clear(); Vector.clear(); }
/// FindNodeOrInsertPos - Look up the node specified by ID. If it exists,
/// return it. If not, return the insertion token that will make insertion
/// faster.
T *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) {
return Set.FindNodeOrInsertPos(ID, InsertPos);
}
/// GetOrInsertNode - If there is an existing simple Node exactly
/// equal to the specified node, return it. Otherwise, insert 'N' and
/// return it instead.
T *GetOrInsertNode(T *N) {
T *Result = Set.GetOrInsertNode(N);
if (Result == N) Vector.push_back(N);
return Result;
}
/// InsertNode - Insert the specified node into the folding set, knowing that
/// it is not already in the folding set. InsertPos must be obtained from
/// FindNodeOrInsertPos.
void InsertNode(T *N, void *InsertPos) {
Set.InsertNode(N, InsertPos);
Vector.push_back(N);
}
/// InsertNode - Insert the specified node into the folding set, knowing that
/// it is not already in the folding set.
void InsertNode(T *N) {
Set.InsertNode(N);
Vector.push_back(N);
}
/// size - Returns the number of nodes in the folding set.
unsigned size() const { return Set.size(); }
/// empty - Returns true if there are no nodes in the folding set.
bool empty() const { return Set.empty(); }
};
//===----------------------------------------------------------------------===//
/// FoldingSetIteratorImpl - This is the common iterator support shared by all
/// folding sets, which knows how to walk the folding set hash table.
class FoldingSetIteratorImpl {
protected:
FoldingSetNode *NodePtr;
FoldingSetIteratorImpl(void **Bucket);
void advance();
public:
bool operator==(const FoldingSetIteratorImpl &RHS) const {
return NodePtr == RHS.NodePtr;
}
bool operator!=(const FoldingSetIteratorImpl &RHS) const {
return NodePtr != RHS.NodePtr;
}
};
template<class T>
class FoldingSetIterator : public FoldingSetIteratorImpl {
public:
explicit FoldingSetIterator(void **Bucket) : FoldingSetIteratorImpl(Bucket) {}
T &operator*() const {
return *static_cast<T*>(NodePtr);
}
T *operator->() const {
return static_cast<T*>(NodePtr);
}
inline FoldingSetIterator &operator++() { // Preincrement
advance();
return *this;
}
FoldingSetIterator operator++(int) { // Postincrement
FoldingSetIterator tmp = *this; ++*this; return tmp;
}
};
//===----------------------------------------------------------------------===//
/// FoldingSetBucketIteratorImpl - This is the common bucket iterator support
/// shared by all folding sets, which knows how to walk a particular bucket
/// of a folding set hash table.
class FoldingSetBucketIteratorImpl {
protected:
void *Ptr;
explicit FoldingSetBucketIteratorImpl(void **Bucket);
FoldingSetBucketIteratorImpl(void **Bucket, bool)
: Ptr(Bucket) {}
void advance() {
void *Probe = static_cast<FoldingSetNode*>(Ptr)->getNextInBucket();
uintptr_t x = reinterpret_cast<uintptr_t>(Probe) & ~0x1;
Ptr = reinterpret_cast<void*>(x);
}
public:
bool operator==(const FoldingSetBucketIteratorImpl &RHS) const {
return Ptr == RHS.Ptr;
}
bool operator!=(const FoldingSetBucketIteratorImpl &RHS) const {
return Ptr != RHS.Ptr;
}
};
template<class T>
class FoldingSetBucketIterator : public FoldingSetBucketIteratorImpl {
public:
explicit FoldingSetBucketIterator(void **Bucket) :
FoldingSetBucketIteratorImpl(Bucket) {}
FoldingSetBucketIterator(void **Bucket, bool) :
FoldingSetBucketIteratorImpl(Bucket, true) {}
T &operator*() const { return *static_cast<T*>(Ptr); }
T *operator->() const { return static_cast<T*>(Ptr); }
inline FoldingSetBucketIterator &operator++() { // Preincrement
advance();
return *this;
}
FoldingSetBucketIterator operator++(int) { // Postincrement
FoldingSetBucketIterator tmp = *this; ++*this; return tmp;
}
};
//===----------------------------------------------------------------------===//
/// FoldingSetNodeWrapper - This template class is used to "wrap" arbitrary
/// types in an enclosing object so that they can be inserted into FoldingSets.
template <typename T>
class FoldingSetNodeWrapper : public FoldingSetNode {
T data;
public:
explicit FoldingSetNodeWrapper(const T &x) : data(x) {}
virtual ~FoldingSetNodeWrapper() {}
template<typename A1>
explicit FoldingSetNodeWrapper(const A1 &a1)
: data(a1) {}
template <typename A1, typename A2>
explicit FoldingSetNodeWrapper(const A1 &a1, const A2 &a2)
: data(a1,a2) {}
template <typename A1, typename A2, typename A3>
explicit FoldingSetNodeWrapper(const A1 &a1, const A2 &a2, const A3 &a3)
: data(a1,a2,a3) {}
template <typename A1, typename A2, typename A3, typename A4>
explicit FoldingSetNodeWrapper(const A1 &a1, const A2 &a2, const A3 &a3,
const A4 &a4)
: data(a1,a2,a3,a4) {}
template <typename A1, typename A2, typename A3, typename A4, typename A5>
explicit FoldingSetNodeWrapper(const A1 &a1, const A2 &a2, const A3 &a3,
const A4 &a4, const A5 &a5)
: data(a1,a2,a3,a4,a5) {}
void Profile(FoldingSetNodeID &ID) { FoldingSetTrait<T>::Profile(data, ID); }
T &getValue() { return data; }
const T &getValue() const { return data; }
operator T&() { return data; }
operator const T&() const { return data; }
};
//===----------------------------------------------------------------------===//
/// FastFoldingSetNode - This is a subclass of FoldingSetNode which stores
/// a FoldingSetNodeID value rather than requiring the node to recompute it
/// each time it is needed. This trades space for speed (which can be
/// significant if the ID is long), and it also permits nodes to drop
/// information that would otherwise only be required for recomputing an ID.
class FastFoldingSetNode : public FoldingSetNode {
FoldingSetNodeID FastID;
protected:
explicit FastFoldingSetNode(const FoldingSetNodeID &ID) : FastID(ID) {}
public:
void Profile(FoldingSetNodeID &ID) const {
ID.AddNodeID(FastID);
}
};
//===----------------------------------------------------------------------===//
// Partial specializations of FoldingSetTrait.
template<typename T> struct FoldingSetTrait<T*> {
static inline void Profile(T *X, FoldingSetNodeID &ID) {
ID.AddPointer(X);
}
};
} // End of namespace llvm.
#endif

View File

@@ -0,0 +1,106 @@
//===-- llvm/ADT/GraphTraits.h - Graph traits template ----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the little GraphTraits<X> template class that should be
// specialized by classes that want to be iteratable by generic graph iterators.
//
// This file also defines the marker class Inverse that is used to iterate over
// graphs in a graph defined, inverse ordering...
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_GRAPHTRAITS_H
#define LLVM_ADT_GRAPHTRAITS_H
namespace llvm {
// GraphTraits - This class should be specialized by different graph types...
// which is why the default version is empty.
//
template<class GraphType>
struct GraphTraits {
// Elements to provide:
// typedef NodeType - Type of Node in the graph
// typedef ChildIteratorType - Type used to iterate over children in graph
// static NodeType *getEntryNode(const GraphType &)
// Return the entry node of the graph
// static ChildIteratorType child_begin(NodeType *)
// static ChildIteratorType child_end (NodeType *)
// Return iterators that point to the beginning and ending of the child
// node list for the specified node.
//
// typedef ...iterator nodes_iterator;
// static nodes_iterator nodes_begin(GraphType *G)
// static nodes_iterator nodes_end (GraphType *G)
// nodes_iterator/begin/end - Allow iteration over all nodes in the graph
// static unsigned size (GraphType *G)
// Return total number of nodes in the graph
//
// If anyone tries to use this class without having an appropriate
// specialization, make an error. If you get this error, it's because you
// need to include the appropriate specialization of GraphTraits<> for your
// graph, or you need to define it for a new graph type. Either that or
// your argument to XXX_begin(...) is unknown or needs to have the proper .h
// file #include'd.
//
typedef typename GraphType::UnknownGraphTypeError NodeType;
};
// Inverse - This class is used as a little marker class to tell the graph
// iterator to iterate over the graph in a graph defined "Inverse" ordering.
// Not all graphs define an inverse ordering, and if they do, it depends on
// the graph exactly what that is. Here's an example of usage with the
// df_iterator:
//
// idf_iterator<Method*> I = idf_begin(M), E = idf_end(M);
// for (; I != E; ++I) { ... }
//
// Which is equivalent to:
// df_iterator<Inverse<Method*> > I = idf_begin(M), E = idf_end(M);
// for (; I != E; ++I) { ... }
//
template <class GraphType>
struct Inverse {
const GraphType &Graph;
inline Inverse(const GraphType &G) : Graph(G) {}
};
// Provide a partial specialization of GraphTraits so that the inverse of an
// inverse falls back to the original graph.
template<class T>
struct GraphTraits<Inverse<Inverse<T> > > {
typedef typename GraphTraits<T>::NodeType NodeType;
typedef typename GraphTraits<T>::ChildIteratorType ChildIteratorType;
static NodeType *getEntryNode(Inverse<Inverse<T> > *G) {
return GraphTraits<T>::getEntryNode(G->Graph.Graph);
}
static ChildIteratorType child_begin(NodeType* N) {
return GraphTraits<T>::child_begin(N);
}
static ChildIteratorType child_end(NodeType* N) {
return GraphTraits<T>::child_end(N);
}
};
} // End llvm namespace
#endif

View File

@@ -0,0 +1,765 @@
//===-- llvm/ADT/Hashing.h - Utilities for hashing --------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the newly proposed standard C++ interfaces for hashing
// arbitrary data and building hash functions for user-defined types. This
// interface was originally proposed in N3333[1] and is currently under review
// for inclusion in a future TR and/or standard.
//
// The primary interfaces provide are comprised of one type and three functions:
//
// -- 'hash_code' class is an opaque type representing the hash code for some
// data. It is the intended product of hashing, and can be used to implement
// hash tables, checksumming, and other common uses of hashes. It is not an
// integer type (although it can be converted to one) because it is risky
// to assume much about the internals of a hash_code. In particular, each
// execution of the program has a high probability of producing a different
// hash_code for a given input. Thus their values are not stable to save or
// persist, and should only be used during the execution for the
// construction of hashing datastructures.
//
// -- 'hash_value' is a function designed to be overloaded for each
// user-defined type which wishes to be used within a hashing context. It
// should be overloaded within the user-defined type's namespace and found
// via ADL. Overloads for primitive types are provided by this library.
//
// -- 'hash_combine' and 'hash_combine_range' are functions designed to aid
// programmers in easily and intuitively combining a set of data into
// a single hash_code for their object. They should only logically be used
// within the implementation of a 'hash_value' routine or similar context.
//
// Note that 'hash_combine_range' contains very special logic for hashing
// a contiguous array of integers or pointers. This logic is *extremely* fast,
// on a modern Intel "Gainestown" Xeon (Nehalem uarch) @2.2 GHz, these were
// benchmarked at over 6.5 GiB/s for large keys, and <20 cycles/hash for keys
// under 32-bytes.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_HASHING_H
#define LLVM_ADT_HASHING_H
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/Support/Host.h"
#include "llvm/Support/SwapByteOrder.h"
#include "llvm/Support/type_traits.h"
#include <algorithm>
#include <cassert>
#include <cstring>
#include <iterator>
#include <utility>
// Allow detecting C++11 feature availability when building with Clang without
// breaking other compilers.
#ifndef __has_feature
# define __has_feature(x) 0
#endif
namespace llvm {
/// \brief An opaque object representing a hash code.
///
/// This object represents the result of hashing some entity. It is intended to
/// be used to implement hashtables or other hashing-based data structures.
/// While it wraps and exposes a numeric value, this value should not be
/// trusted to be stable or predictable across processes or executions.
///
/// In order to obtain the hash_code for an object 'x':
/// \code
/// using llvm::hash_value;
/// llvm::hash_code code = hash_value(x);
/// \endcode
class hash_code {
size_t value;
public:
/// \brief Default construct a hash_code.
/// Note that this leaves the value uninitialized.
hash_code() {}
/// \brief Form a hash code directly from a numerical value.
hash_code(size_t value) : value(value) {}
/// \brief Convert the hash code to its numerical value for use.
/*explicit*/ operator size_t() const { return value; }
friend bool operator==(const hash_code &lhs, const hash_code &rhs) {
return lhs.value == rhs.value;
}
friend bool operator!=(const hash_code &lhs, const hash_code &rhs) {
return lhs.value != rhs.value;
}
/// \brief Allow a hash_code to be directly run through hash_value.
friend size_t hash_value(const hash_code &code) { return code.value; }
};
/// \brief Compute a hash_code for any integer value.
///
/// Note that this function is intended to compute the same hash_code for
/// a particular value without regard to the pre-promotion type. This is in
/// contrast to hash_combine which may produce different hash_codes for
/// differing argument types even if they would implicit promote to a common
/// type without changing the value.
template <typename T>
typename enable_if<is_integral_or_enum<T>, hash_code>::type hash_value(T value);
/// \brief Compute a hash_code for a pointer's address.
///
/// N.B.: This hashes the *address*. Not the value and not the type.
template <typename T> hash_code hash_value(const T *ptr);
/// \brief Compute a hash_code for a pair of objects.
template <typename T, typename U>
hash_code hash_value(const std::pair<T, U> &arg);
/// \brief Compute a hash_code for a standard string.
template <typename T>
hash_code hash_value(const std::basic_string<T> &arg);
/// \brief Override the execution seed with a fixed value.
///
/// This hashing library uses a per-execution seed designed to change on each
/// run with high probability in order to ensure that the hash codes are not
/// attackable and to ensure that output which is intended to be stable does
/// not rely on the particulars of the hash codes produced.
///
/// That said, there are use cases where it is important to be able to
/// reproduce *exactly* a specific behavior. To that end, we provide a function
/// which will forcibly set the seed to a fixed value. This must be done at the
/// start of the program, before any hashes are computed. Also, it cannot be
/// undone. This makes it thread-hostile and very hard to use outside of
/// immediately on start of a simple program designed for reproducible
/// behavior.
void set_fixed_execution_hash_seed(size_t fixed_value);
// All of the implementation details of actually computing the various hash
// code values are held within this namespace. These routines are included in
// the header file mainly to allow inlining and constant propagation.
namespace hashing {
namespace detail {
inline uint64_t fetch64(const char *p) {
uint64_t result;
memcpy(&result, p, sizeof(result));
if (sys::IsBigEndianHost)
return sys::SwapByteOrder(result);
return result;
}
inline uint32_t fetch32(const char *p) {
uint32_t result;
memcpy(&result, p, sizeof(result));
if (sys::IsBigEndianHost)
return sys::SwapByteOrder(result);
return result;
}
/// Some primes between 2^63 and 2^64 for various uses.
static const uint64_t k0 = 0xc3a5c85c97cb3127ULL;
static const uint64_t k1 = 0xb492b66fbe98f273ULL;
static const uint64_t k2 = 0x9ae16a3b2f90404fULL;
static const uint64_t k3 = 0xc949d7c7509e6557ULL;
/// \brief Bitwise right rotate.
/// Normally this will compile to a single instruction, especially if the
/// shift is a manifest constant.
inline uint64_t rotate(uint64_t val, size_t shift) {
// Avoid shifting by 64: doing so yields an undefined result.
return shift == 0 ? val : ((val >> shift) | (val << (64 - shift)));
}
inline uint64_t shift_mix(uint64_t val) {
return val ^ (val >> 47);
}
inline uint64_t hash_16_bytes(uint64_t low, uint64_t high) {
// Murmur-inspired hashing.
const uint64_t kMul = 0x9ddfea08eb382d69ULL;
uint64_t a = (low ^ high) * kMul;
a ^= (a >> 47);
uint64_t b = (high ^ a) * kMul;
b ^= (b >> 47);
b *= kMul;
return b;
}
inline uint64_t hash_1to3_bytes(const char *s, size_t len, uint64_t seed) {
uint8_t a = s[0];
uint8_t b = s[len >> 1];
uint8_t c = s[len - 1];
uint32_t y = static_cast<uint32_t>(a) + (static_cast<uint32_t>(b) << 8);
uint32_t z = len + (static_cast<uint32_t>(c) << 2);
return shift_mix(y * k2 ^ z * k3 ^ seed) * k2;
}
inline uint64_t hash_4to8_bytes(const char *s, size_t len, uint64_t seed) {
uint64_t a = fetch32(s);
return hash_16_bytes(len + (a << 3), seed ^ fetch32(s + len - 4));
}
inline uint64_t hash_9to16_bytes(const char *s, size_t len, uint64_t seed) {
uint64_t a = fetch64(s);
uint64_t b = fetch64(s + len - 8);
return hash_16_bytes(seed ^ a, rotate(b + len, len)) ^ b;
}
inline uint64_t hash_17to32_bytes(const char *s, size_t len, uint64_t seed) {
uint64_t a = fetch64(s) * k1;
uint64_t b = fetch64(s + 8);
uint64_t c = fetch64(s + len - 8) * k2;
uint64_t d = fetch64(s + len - 16) * k0;
return hash_16_bytes(rotate(a - b, 43) + rotate(c ^ seed, 30) + d,
a + rotate(b ^ k3, 20) - c + len + seed);
}
inline uint64_t hash_33to64_bytes(const char *s, size_t len, uint64_t seed) {
uint64_t z = fetch64(s + 24);
uint64_t a = fetch64(s) + (len + fetch64(s + len - 16)) * k0;
uint64_t b = rotate(a + z, 52);
uint64_t c = rotate(a, 37);
a += fetch64(s + 8);
c += rotate(a, 7);
a += fetch64(s + 16);
uint64_t vf = a + z;
uint64_t vs = b + rotate(a, 31) + c;
a = fetch64(s + 16) + fetch64(s + len - 32);
z = fetch64(s + len - 8);
b = rotate(a + z, 52);
c = rotate(a, 37);
a += fetch64(s + len - 24);
c += rotate(a, 7);
a += fetch64(s + len - 16);
uint64_t wf = a + z;
uint64_t ws = b + rotate(a, 31) + c;
uint64_t r = shift_mix((vf + ws) * k2 + (wf + vs) * k0);
return shift_mix((seed ^ (r * k0)) + vs) * k2;
}
inline uint64_t hash_short(const char *s, size_t length, uint64_t seed) {
if (length >= 4 && length <= 8)
return hash_4to8_bytes(s, length, seed);
if (length > 8 && length <= 16)
return hash_9to16_bytes(s, length, seed);
if (length > 16 && length <= 32)
return hash_17to32_bytes(s, length, seed);
if (length > 32)
return hash_33to64_bytes(s, length, seed);
if (length != 0)
return hash_1to3_bytes(s, length, seed);
return k2 ^ seed;
}
/// \brief The intermediate state used during hashing.
/// Currently, the algorithm for computing hash codes is based on CityHash and
/// keeps 56 bytes of arbitrary state.
struct hash_state {
uint64_t h0, h1, h2, h3, h4, h5, h6;
uint64_t seed;
/// \brief Create a new hash_state structure and initialize it based on the
/// seed and the first 64-byte chunk.
/// This effectively performs the initial mix.
static hash_state create(const char *s, uint64_t seed) {
hash_state state = {
0, seed, hash_16_bytes(seed, k1), rotate(seed ^ k1, 49),
seed * k1, shift_mix(seed), 0, seed };
state.h6 = hash_16_bytes(state.h4, state.h5);
state.mix(s);
return state;
}
/// \brief Mix 32-bytes from the input sequence into the 16-bytes of 'a'
/// and 'b', including whatever is already in 'a' and 'b'.
static void mix_32_bytes(const char *s, uint64_t &a, uint64_t &b) {
a += fetch64(s);
uint64_t c = fetch64(s + 24);
b = rotate(b + a + c, 21);
uint64_t d = a;
a += fetch64(s + 8) + fetch64(s + 16);
b += rotate(a, 44) + d;
a += c;
}
/// \brief Mix in a 64-byte buffer of data.
/// We mix all 64 bytes even when the chunk length is smaller, but we
/// record the actual length.
void mix(const char *s) {
h0 = rotate(h0 + h1 + h3 + fetch64(s + 8), 37) * k1;
h1 = rotate(h1 + h4 + fetch64(s + 48), 42) * k1;
h0 ^= h6;
h1 += h3 + fetch64(s + 40);
h2 = rotate(h2 + h5, 33) * k1;
h3 = h4 * k1;
h4 = h0 + h5;
mix_32_bytes(s, h3, h4);
h5 = h2 + h6;
h6 = h1 + fetch64(s + 16);
mix_32_bytes(s + 32, h5, h6);
std::swap(h2, h0);
}
/// \brief Compute the final 64-bit hash code value based on the current
/// state and the length of bytes hashed.
uint64_t finalize(size_t length) {
return hash_16_bytes(hash_16_bytes(h3, h5) + shift_mix(h1) * k1 + h2,
hash_16_bytes(h4, h6) + shift_mix(length) * k1 + h0);
}
};
/// \brief A global, fixed seed-override variable.
///
/// This variable can be set using the \see llvm::set_fixed_execution_seed
/// function. See that function for details. Do not, under any circumstances,
/// set or read this variable.
extern size_t fixed_seed_override;
inline size_t get_execution_seed() {
// FIXME: This needs to be a per-execution seed. This is just a placeholder
// implementation. Switching to a per-execution seed is likely to flush out
// instability bugs and so will happen as its own commit.
//
// However, if there is a fixed seed override set the first time this is
// called, return that instead of the per-execution seed.
const uint64_t seed_prime = 0xff51afd7ed558ccdULL;
static size_t seed = fixed_seed_override ? fixed_seed_override
: (size_t)seed_prime;
return seed;
}
/// \brief Trait to indicate whether a type's bits can be hashed directly.
///
/// A type trait which is true if we want to combine values for hashing by
/// reading the underlying data. It is false if values of this type must
/// first be passed to hash_value, and the resulting hash_codes combined.
//
// FIXME: We want to replace is_integral_or_enum and is_pointer here with
// a predicate which asserts that comparing the underlying storage of two
// values of the type for equality is equivalent to comparing the two values
// for equality. For all the platforms we care about, this holds for integers
// and pointers, but there are platforms where it doesn't and we would like to
// support user-defined types which happen to satisfy this property.
template <typename T> struct is_hashable_data
: integral_constant<bool, ((is_integral_or_enum<T>::value ||
is_pointer<T>::value) &&
64 % sizeof(T) == 0)> {};
// Special case std::pair to detect when both types are viable and when there
// is no alignment-derived padding in the pair. This is a bit of a lie because
// std::pair isn't truly POD, but it's close enough in all reasonable
// implementations for our use case of hashing the underlying data.
template <typename T, typename U> struct is_hashable_data<std::pair<T, U> >
: integral_constant<bool, (is_hashable_data<T>::value &&
is_hashable_data<U>::value &&
(sizeof(T) + sizeof(U)) ==
sizeof(std::pair<T, U>))> {};
/// \brief Helper to get the hashable data representation for a type.
/// This variant is enabled when the type itself can be used.
template <typename T>
typename enable_if<is_hashable_data<T>, T>::type
get_hashable_data(const T &value) {
return value;
}
/// \brief Helper to get the hashable data representation for a type.
/// This variant is enabled when we must first call hash_value and use the
/// result as our data.
template <typename T>
typename enable_if_c<!is_hashable_data<T>::value, size_t>::type
get_hashable_data(const T &value) {
using ::llvm::hash_value;
return hash_value(value);
}
/// \brief Helper to store data from a value into a buffer and advance the
/// pointer into that buffer.
///
/// This routine first checks whether there is enough space in the provided
/// buffer, and if not immediately returns false. If there is space, it
/// copies the underlying bytes of value into the buffer, advances the
/// buffer_ptr past the copied bytes, and returns true.
template <typename T>
bool store_and_advance(char *&buffer_ptr, char *buffer_end, const T& value,
size_t offset = 0) {
size_t store_size = sizeof(value) - offset;
if (buffer_ptr + store_size > buffer_end)
return false;
const char *value_data = reinterpret_cast<const char *>(&value);
memcpy(buffer_ptr, value_data + offset, store_size);
buffer_ptr += store_size;
return true;
}
/// \brief Implement the combining of integral values into a hash_code.
///
/// This overload is selected when the value type of the iterator is
/// integral. Rather than computing a hash_code for each object and then
/// combining them, this (as an optimization) directly combines the integers.
template <typename InputIteratorT>
hash_code hash_combine_range_impl(InputIteratorT first, InputIteratorT last) {
const size_t seed = get_execution_seed();
char buffer[64], *buffer_ptr = buffer;
char *const buffer_end = buffer_ptr + array_lengthof(buffer);
while (first != last && store_and_advance(buffer_ptr, buffer_end,
get_hashable_data(*first)))
++first;
if (first == last)
return hash_short(buffer, buffer_ptr - buffer, seed);
assert(buffer_ptr == buffer_end);
hash_state state = state.create(buffer, seed);
size_t length = 64;
while (first != last) {
// Fill up the buffer. We don't clear it, which re-mixes the last round
// when only a partial 64-byte chunk is left.
buffer_ptr = buffer;
while (first != last && store_and_advance(buffer_ptr, buffer_end,
get_hashable_data(*first)))
++first;
// Rotate the buffer if we did a partial fill in order to simulate doing
// a mix of the last 64-bytes. That is how the algorithm works when we
// have a contiguous byte sequence, and we want to emulate that here.
std::rotate(buffer, buffer_ptr, buffer_end);
// Mix this chunk into the current state.
state.mix(buffer);
length += buffer_ptr - buffer;
};
return state.finalize(length);
}
/// \brief Implement the combining of integral values into a hash_code.
///
/// This overload is selected when the value type of the iterator is integral
/// and when the input iterator is actually a pointer. Rather than computing
/// a hash_code for each object and then combining them, this (as an
/// optimization) directly combines the integers. Also, because the integers
/// are stored in contiguous memory, this routine avoids copying each value
/// and directly reads from the underlying memory.
template <typename ValueT>
typename enable_if<is_hashable_data<ValueT>, hash_code>::type
hash_combine_range_impl(ValueT *first, ValueT *last) {
const size_t seed = get_execution_seed();
const char *s_begin = reinterpret_cast<const char *>(first);
const char *s_end = reinterpret_cast<const char *>(last);
const size_t length = std::distance(s_begin, s_end);
if (length <= 64)
return hash_short(s_begin, length, seed);
const char *s_aligned_end = s_begin + (length & ~63);
hash_state state = state.create(s_begin, seed);
s_begin += 64;
while (s_begin != s_aligned_end) {
state.mix(s_begin);
s_begin += 64;
}
if (length & 63)
state.mix(s_end - 64);
return state.finalize(length);
}
} // namespace detail
} // namespace hashing
/// \brief Compute a hash_code for a sequence of values.
///
/// This hashes a sequence of values. It produces the same hash_code as
/// 'hash_combine(a, b, c, ...)', but can run over arbitrary sized sequences
/// and is significantly faster given pointers and types which can be hashed as
/// a sequence of bytes.
template <typename InputIteratorT>
hash_code hash_combine_range(InputIteratorT first, InputIteratorT last) {
return ::llvm::hashing::detail::hash_combine_range_impl(first, last);
}
// Implementation details for hash_combine.
namespace hashing {
namespace detail {
/// \brief Helper class to manage the recursive combining of hash_combine
/// arguments.
///
/// This class exists to manage the state and various calls involved in the
/// recursive combining of arguments used in hash_combine. It is particularly
/// useful at minimizing the code in the recursive calls to ease the pain
/// caused by a lack of variadic functions.
struct hash_combine_recursive_helper {
char buffer[64];
hash_state state;
const size_t seed;
public:
/// \brief Construct a recursive hash combining helper.
///
/// This sets up the state for a recursive hash combine, including getting
/// the seed and buffer setup.
hash_combine_recursive_helper()
: seed(get_execution_seed()) {}
/// \brief Combine one chunk of data into the current in-flight hash.
///
/// This merges one chunk of data into the hash. First it tries to buffer
/// the data. If the buffer is full, it hashes the buffer into its
/// hash_state, empties it, and then merges the new chunk in. This also
/// handles cases where the data straddles the end of the buffer.
template <typename T>
char *combine_data(size_t &length, char *buffer_ptr, char *buffer_end, T data) {
if (!store_and_advance(buffer_ptr, buffer_end, data)) {
// Check for skew which prevents the buffer from being packed, and do
// a partial store into the buffer to fill it. This is only a concern
// with the variadic combine because that formation can have varying
// argument types.
size_t partial_store_size = buffer_end - buffer_ptr;
memcpy(buffer_ptr, &data, partial_store_size);
// If the store fails, our buffer is full and ready to hash. We have to
// either initialize the hash state (on the first full buffer) or mix
// this buffer into the existing hash state. Length tracks the *hashed*
// length, not the buffered length.
if (length == 0) {
state = state.create(buffer, seed);
length = 64;
} else {
// Mix this chunk into the current state and bump length up by 64.
state.mix(buffer);
length += 64;
}
// Reset the buffer_ptr to the head of the buffer for the next chunk of
// data.
buffer_ptr = buffer;
// Try again to store into the buffer -- this cannot fail as we only
// store types smaller than the buffer.
if (!store_and_advance(buffer_ptr, buffer_end, data,
partial_store_size))
abort();
}
return buffer_ptr;
}
#if defined(__has_feature) && __has_feature(__cxx_variadic_templates__)
/// \brief Recursive, variadic combining method.
///
/// This function recurses through each argument, combining that argument
/// into a single hash.
template <typename T, typename ...Ts>
hash_code combine(size_t length, char *buffer_ptr, char *buffer_end,
const T &arg, const Ts &...args) {
buffer_ptr = combine_data(length, buffer_ptr, buffer_end, get_hashable_data(arg));
// Recurse to the next argument.
return combine(length, buffer_ptr, buffer_end, args...);
}
#else
// Manually expanded recursive combining methods. See variadic above for
// documentation.
template <typename T1, typename T2, typename T3, typename T4, typename T5,
typename T6>
hash_code combine(size_t length, char *buffer_ptr, char *buffer_end,
const T1 &arg1, const T2 &arg2, const T3 &arg3,
const T4 &arg4, const T5 &arg5, const T6 &arg6) {
buffer_ptr = combine_data(length, buffer_ptr, buffer_end, get_hashable_data(arg1));
return combine(length, buffer_ptr, buffer_end, arg2, arg3, arg4, arg5, arg6);
}
template <typename T1, typename T2, typename T3, typename T4, typename T5>
hash_code combine(size_t length, char *buffer_ptr, char *buffer_end,
const T1 &arg1, const T2 &arg2, const T3 &arg3,
const T4 &arg4, const T5 &arg5) {
buffer_ptr = combine_data(length, buffer_ptr, buffer_end, get_hashable_data(arg1));
return combine(length, buffer_ptr, buffer_end, arg2, arg3, arg4, arg5);
}
template <typename T1, typename T2, typename T3, typename T4>
hash_code combine(size_t length, char *buffer_ptr, char *buffer_end,
const T1 &arg1, const T2 &arg2, const T3 &arg3,
const T4 &arg4) {
buffer_ptr = combine_data(length, buffer_ptr, buffer_end, get_hashable_data(arg1));
return combine(length, buffer_ptr, buffer_end, arg2, arg3, arg4);
}
template <typename T1, typename T2, typename T3>
hash_code combine(size_t length, char *buffer_ptr, char *buffer_end,
const T1 &arg1, const T2 &arg2, const T3 &arg3) {
buffer_ptr = combine_data(length, buffer_ptr, buffer_end, get_hashable_data(arg1));
return combine(length, buffer_ptr, buffer_end, arg2, arg3);
}
template <typename T1, typename T2>
hash_code combine(size_t length, char *buffer_ptr, char *buffer_end,
const T1 &arg1, const T2 &arg2) {
buffer_ptr = combine_data(length, buffer_ptr, buffer_end, get_hashable_data(arg1));
return combine(length, buffer_ptr, buffer_end, arg2);
}
template <typename T1>
hash_code combine(size_t length, char *buffer_ptr, char *buffer_end,
const T1 &arg1) {
buffer_ptr = combine_data(length, buffer_ptr, buffer_end, get_hashable_data(arg1));
return combine(length, buffer_ptr, buffer_end);
}
#endif
/// \brief Base case for recursive, variadic combining.
///
/// The base case when combining arguments recursively is reached when all
/// arguments have been handled. It flushes the remaining buffer and
/// constructs a hash_code.
hash_code combine(size_t length, char *buffer_ptr, char *buffer_end) {
// Check whether the entire set of values fit in the buffer. If so, we'll
// use the optimized short hashing routine and skip state entirely.
if (length == 0)
return hash_short(buffer, buffer_ptr - buffer, seed);
// Mix the final buffer, rotating it if we did a partial fill in order to
// simulate doing a mix of the last 64-bytes. That is how the algorithm
// works when we have a contiguous byte sequence, and we want to emulate
// that here.
std::rotate(buffer, buffer_ptr, buffer_end);
// Mix this chunk into the current state.
state.mix(buffer);
length += buffer_ptr - buffer;
return state.finalize(length);
}
};
} // namespace detail
} // namespace hashing
#if __has_feature(__cxx_variadic_templates__)
/// \brief Combine values into a single hash_code.
///
/// This routine accepts a varying number of arguments of any type. It will
/// attempt to combine them into a single hash_code. For user-defined types it
/// attempts to call a \see hash_value overload (via ADL) for the type. For
/// integer and pointer types it directly combines their data into the
/// resulting hash_code.
///
/// The result is suitable for returning from a user's hash_value
/// *implementation* for their user-defined type. Consumers of a type should
/// *not* call this routine, they should instead call 'hash_value'.
template <typename ...Ts> hash_code hash_combine(const Ts &...args) {
// Recursively hash each argument using a helper class.
::llvm::hashing::detail::hash_combine_recursive_helper helper;
return helper.combine(0, helper.buffer, helper.buffer + 64, args...);
}
#else
// What follows are manually exploded overloads for each argument width. See
// the above variadic definition for documentation and specification.
template <typename T1, typename T2, typename T3, typename T4, typename T5,
typename T6>
hash_code hash_combine(const T1 &arg1, const T2 &arg2, const T3 &arg3,
const T4 &arg4, const T5 &arg5, const T6 &arg6) {
::llvm::hashing::detail::hash_combine_recursive_helper helper;
return helper.combine(0, helper.buffer, helper.buffer + 64,
arg1, arg2, arg3, arg4, arg5, arg6);
}
template <typename T1, typename T2, typename T3, typename T4, typename T5>
hash_code hash_combine(const T1 &arg1, const T2 &arg2, const T3 &arg3,
const T4 &arg4, const T5 &arg5) {
::llvm::hashing::detail::hash_combine_recursive_helper helper;
return helper.combine(0, helper.buffer, helper.buffer + 64,
arg1, arg2, arg3, arg4, arg5);
}
template <typename T1, typename T2, typename T3, typename T4>
hash_code hash_combine(const T1 &arg1, const T2 &arg2, const T3 &arg3,
const T4 &arg4) {
::llvm::hashing::detail::hash_combine_recursive_helper helper;
return helper.combine(0, helper.buffer, helper.buffer + 64,
arg1, arg2, arg3, arg4);
}
template <typename T1, typename T2, typename T3>
hash_code hash_combine(const T1 &arg1, const T2 &arg2, const T3 &arg3) {
::llvm::hashing::detail::hash_combine_recursive_helper helper;
return helper.combine(0, helper.buffer, helper.buffer + 64, arg1, arg2, arg3);
}
template <typename T1, typename T2>
hash_code hash_combine(const T1 &arg1, const T2 &arg2) {
::llvm::hashing::detail::hash_combine_recursive_helper helper;
return helper.combine(0, helper.buffer, helper.buffer + 64, arg1, arg2);
}
template <typename T1>
hash_code hash_combine(const T1 &arg1) {
::llvm::hashing::detail::hash_combine_recursive_helper helper;
return helper.combine(0, helper.buffer, helper.buffer + 64, arg1);
}
#endif
// Implementation details for implementations of hash_value overloads provided
// here.
namespace hashing {
namespace detail {
/// \brief Helper to hash the value of a single integer.
///
/// Overloads for smaller integer types are not provided to ensure consistent
/// behavior in the presence of integral promotions. Essentially,
/// "hash_value('4')" and "hash_value('0' + 4)" should be the same.
inline hash_code hash_integer_value(uint64_t value) {
// Similar to hash_4to8_bytes but using a seed instead of length.
const uint64_t seed = get_execution_seed();
const char *s = reinterpret_cast<const char *>(&value);
const uint64_t a = fetch32(s);
return hash_16_bytes(seed + (a << 3), fetch32(s + 4));
}
} // namespace detail
} // namespace hashing
// Declared and documented above, but defined here so that any of the hashing
// infrastructure is available.
template <typename T>
typename enable_if<is_integral_or_enum<T>, hash_code>::type
hash_value(T value) {
return ::llvm::hashing::detail::hash_integer_value(value);
}
// Declared and documented above, but defined here so that any of the hashing
// infrastructure is available.
template <typename T> hash_code hash_value(const T *ptr) {
return ::llvm::hashing::detail::hash_integer_value(
reinterpret_cast<uintptr_t>(ptr));
}
// Declared and documented above, but defined here so that any of the hashing
// infrastructure is available.
template <typename T, typename U>
hash_code hash_value(const std::pair<T, U> &arg) {
return hash_combine(arg.first, arg.second);
}
// Declared and documented above, but defined here so that any of the hashing
// infrastructure is available.
template <typename T>
hash_code hash_value(const std::basic_string<T> &arg) {
return hash_combine_range(arg.begin(), arg.end());
}
} // namespace llvm
#endif

View File

@@ -0,0 +1,248 @@
//===--- ImmutableIntervalMap.h - Immutable (functional) map ---*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the ImmutableIntervalMap class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_IMMUTABLEINTERVALMAP_H
#define LLVM_ADT_IMMUTABLEINTERVALMAP_H
#include "llvm/ADT/ImmutableMap.h"
namespace llvm {
class Interval {
private:
int64_t Start;
int64_t End;
public:
Interval(int64_t S, int64_t E) : Start(S), End(E) {}
int64_t getStart() const { return Start; }
int64_t getEnd() const { return End; }
};
template <typename T>
struct ImutIntervalInfo {
typedef const std::pair<Interval, T> value_type;
typedef const value_type &value_type_ref;
typedef const Interval key_type;
typedef const Interval &key_type_ref;
typedef const T data_type;
typedef const T &data_type_ref;
static key_type_ref KeyOfValue(value_type_ref V) {
return V.first;
}
static data_type_ref DataOfValue(value_type_ref V) {
return V.second;
}
static bool isEqual(key_type_ref L, key_type_ref R) {
return L.getStart() == R.getStart() && L.getEnd() == R.getEnd();
}
static bool isDataEqual(data_type_ref L, data_type_ref R) {
return ImutContainerInfo<T>::isEqual(L,R);
}
static bool isLess(key_type_ref L, key_type_ref R) {
// Assume L and R does not overlap.
if (L.getStart() < R.getStart()) {
assert(L.getEnd() < R.getStart());
return true;
} else if (L.getStart() == R.getStart()) {
assert(L.getEnd() == R.getEnd());
return false;
} else {
assert(L.getStart() > R.getEnd());
return false;
}
}
static bool isContainedIn(key_type_ref K, key_type_ref L) {
if (K.getStart() >= L.getStart() && K.getEnd() <= L.getEnd())
return true;
else
return false;
}
static void Profile(FoldingSetNodeID &ID, value_type_ref V) {
ID.AddInteger(V.first.getStart());
ID.AddInteger(V.first.getEnd());
ImutProfileInfo<T>::Profile(ID, V.second);
}
};
template <typename ImutInfo>
class ImutIntervalAVLFactory : public ImutAVLFactory<ImutInfo> {
typedef ImutAVLTree<ImutInfo> TreeTy;
typedef typename ImutInfo::value_type value_type;
typedef typename ImutInfo::value_type_ref value_type_ref;
typedef typename ImutInfo::key_type key_type;
typedef typename ImutInfo::key_type_ref key_type_ref;
typedef typename ImutInfo::data_type data_type;
typedef typename ImutInfo::data_type_ref data_type_ref;
public:
ImutIntervalAVLFactory(BumpPtrAllocator &Alloc)
: ImutAVLFactory<ImutInfo>(Alloc) {}
TreeTy *Add(TreeTy *T, value_type_ref V) {
T = add_internal(V,T);
this->MarkImmutable(T);
return T;
}
TreeTy *Find(TreeTy *T, key_type_ref K) {
if (!T)
return NULL;
key_type_ref CurrentKey = ImutInfo::KeyOfValue(this->getValue(T));
if (ImutInfo::isContainedIn(K, CurrentKey))
return T;
else if (ImutInfo::isLess(K, CurrentKey))
return Find(this->getLeft(T), K);
else
return Find(this->getRight(T), K);
}
private:
TreeTy *add_internal(value_type_ref V, TreeTy *T) {
key_type_ref K = ImutInfo::KeyOfValue(V);
T = removeAllOverlaps(T, K);
if (this->isEmpty(T))
return this->CreateNode(NULL, V, NULL);
assert(!T->isMutable());
key_type_ref KCurrent = ImutInfo::KeyOfValue(this->Value(T));
if (ImutInfo::isLess(K, KCurrent))
return this->Balance(add_internal(V, this->Left(T)), this->Value(T),
this->Right(T));
else
return this->Balance(this->Left(T), this->Value(T),
add_internal(V, this->Right(T)));
}
// Remove all overlaps from T.
TreeTy *removeAllOverlaps(TreeTy *T, key_type_ref K) {
bool Changed;
do {
Changed = false;
T = removeOverlap(T, K, Changed);
this->markImmutable(T);
} while (Changed);
return T;
}
// Remove one overlap from T.
TreeTy *removeOverlap(TreeTy *T, key_type_ref K, bool &Changed) {
if (!T)
return NULL;
Interval CurrentK = ImutInfo::KeyOfValue(this->Value(T));
// If current key does not overlap the inserted key.
if (CurrentK.getStart() > K.getEnd())
return this->Balance(removeOverlap(this->Left(T), K, Changed),
this->Value(T), this->Right(T));
else if (CurrentK.getEnd() < K.getStart())
return this->Balance(this->Left(T), this->Value(T),
removeOverlap(this->Right(T), K, Changed));
// Current key overlaps with the inserted key.
// Remove the current key.
Changed = true;
data_type_ref OldData = ImutInfo::DataOfValue(this->Value(T));
T = this->Remove_internal(CurrentK, T);
// Add back the unoverlapped part of the current key.
if (CurrentK.getStart() < K.getStart()) {
if (CurrentK.getEnd() <= K.getEnd()) {
Interval NewK(CurrentK.getStart(), K.getStart()-1);
return add_internal(std::make_pair(NewK, OldData), T);
} else {
Interval NewK1(CurrentK.getStart(), K.getStart()-1);
T = add_internal(std::make_pair(NewK1, OldData), T);
Interval NewK2(K.getEnd()+1, CurrentK.getEnd());
return add_internal(std::make_pair(NewK2, OldData), T);
}
} else {
if (CurrentK.getEnd() > K.getEnd()) {
Interval NewK(K.getEnd()+1, CurrentK.getEnd());
return add_internal(std::make_pair(NewK, OldData), T);
} else
return T;
}
}
};
/// ImmutableIntervalMap maps an interval [start, end] to a value. The intervals
/// in the map are guaranteed to be disjoint.
template <typename ValT>
class ImmutableIntervalMap
: public ImmutableMap<Interval, ValT, ImutIntervalInfo<ValT> > {
typedef typename ImutIntervalInfo<ValT>::value_type value_type;
typedef typename ImutIntervalInfo<ValT>::value_type_ref value_type_ref;
typedef typename ImutIntervalInfo<ValT>::key_type key_type;
typedef typename ImutIntervalInfo<ValT>::key_type_ref key_type_ref;
typedef typename ImutIntervalInfo<ValT>::data_type data_type;
typedef typename ImutIntervalInfo<ValT>::data_type_ref data_type_ref;
typedef ImutAVLTree<ImutIntervalInfo<ValT> > TreeTy;
public:
explicit ImmutableIntervalMap(TreeTy *R)
: ImmutableMap<Interval, ValT, ImutIntervalInfo<ValT> >(R) {}
class Factory {
ImutIntervalAVLFactory<ImutIntervalInfo<ValT> > F;
public:
Factory(BumpPtrAllocator& Alloc) : F(Alloc) {}
ImmutableIntervalMap getEmptyMap() {
return ImmutableIntervalMap(F.getEmptyTree());
}
ImmutableIntervalMap add(ImmutableIntervalMap Old,
key_type_ref K, data_type_ref D) {
TreeTy *T = F.add(Old.Root, std::pair<key_type, data_type>(K, D));
return ImmutableIntervalMap(F.getCanonicalTree(T));
}
ImmutableIntervalMap remove(ImmutableIntervalMap Old, key_type_ref K) {
TreeTy *T = F.remove(Old.Root, K);
return ImmutableIntervalMap(F.getCanonicalTree(T));
}
data_type *lookup(ImmutableIntervalMap M, key_type_ref K) {
TreeTy *T = F.Find(M.getRoot(), K);
if (T)
return &T->getValue().second;
else
return 0;
}
};
private:
// For ImmutableIntervalMap, the lookup operation has to be done by the
// factory.
data_type* lookup(key_type_ref K) const;
};
} // end namespace llvm
#endif

View File

@@ -0,0 +1,229 @@
//==--- ImmutableList.h - Immutable (functional) list interface --*- C++ -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the ImmutableList class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_IMMUTABLELIST_H
#define LLVM_ADT_IMMUTABLELIST_H
#include "llvm/ADT/FoldingSet.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/DataTypes.h"
#include <cassert>
namespace llvm {
template <typename T> class ImmutableListFactory;
template <typename T>
class ImmutableListImpl : public FoldingSetNode {
T Head;
const ImmutableListImpl* Tail;
ImmutableListImpl(const T& head, const ImmutableListImpl* tail = 0)
: Head(head), Tail(tail) {}
friend class ImmutableListFactory<T>;
void operator=(const ImmutableListImpl&) LLVM_DELETED_FUNCTION;
ImmutableListImpl(const ImmutableListImpl&) LLVM_DELETED_FUNCTION;
public:
const T& getHead() const { return Head; }
const ImmutableListImpl* getTail() const { return Tail; }
static inline void Profile(FoldingSetNodeID& ID, const T& H,
const ImmutableListImpl* L){
ID.AddPointer(L);
ID.Add(H);
}
void Profile(FoldingSetNodeID& ID) {
Profile(ID, Head, Tail);
}
};
/// ImmutableList - This class represents an immutable (functional) list.
/// It is implemented as a smart pointer (wraps ImmutableListImpl), so it
/// it is intended to always be copied by value as if it were a pointer.
/// This interface matches ImmutableSet and ImmutableMap. ImmutableList
/// objects should almost never be created directly, and instead should
/// be created by ImmutableListFactory objects that manage the lifetime
/// of a group of lists. When the factory object is reclaimed, all lists
/// created by that factory are released as well.
template <typename T>
class ImmutableList {
public:
typedef T value_type;
typedef ImmutableListFactory<T> Factory;
private:
const ImmutableListImpl<T>* X;
public:
// This constructor should normally only be called by ImmutableListFactory<T>.
// There may be cases, however, when one needs to extract the internal pointer
// and reconstruct a list object from that pointer.
ImmutableList(const ImmutableListImpl<T>* x = 0) : X(x) {}
const ImmutableListImpl<T>* getInternalPointer() const {
return X;
}
class iterator {
const ImmutableListImpl<T>* L;
public:
iterator() : L(0) {}
iterator(ImmutableList l) : L(l.getInternalPointer()) {}
iterator& operator++() { L = L->getTail(); return *this; }
bool operator==(const iterator& I) const { return L == I.L; }
bool operator!=(const iterator& I) const { return L != I.L; }
const value_type& operator*() const { return L->getHead(); }
ImmutableList getList() const { return L; }
};
/// begin - Returns an iterator referring to the head of the list, or
/// an iterator denoting the end of the list if the list is empty.
iterator begin() const { return iterator(X); }
/// end - Returns an iterator denoting the end of the list. This iterator
/// does not refer to a valid list element.
iterator end() const { return iterator(); }
/// isEmpty - Returns true if the list is empty.
bool isEmpty() const { return !X; }
bool contains(const T& V) const {
for (iterator I = begin(), E = end(); I != E; ++I) {
if (*I == V)
return true;
}
return false;
}
/// isEqual - Returns true if two lists are equal. Because all lists created
/// from the same ImmutableListFactory are uniqued, this has O(1) complexity
/// because it the contents of the list do not need to be compared. Note
/// that you should only compare two lists created from the same
/// ImmutableListFactory.
bool isEqual(const ImmutableList& L) const { return X == L.X; }
bool operator==(const ImmutableList& L) const { return isEqual(L); }
/// getHead - Returns the head of the list.
const T& getHead() {
assert (!isEmpty() && "Cannot get the head of an empty list.");
return X->getHead();
}
/// getTail - Returns the tail of the list, which is another (possibly empty)
/// ImmutableList.
ImmutableList getTail() {
return X ? X->getTail() : 0;
}
void Profile(FoldingSetNodeID& ID) const {
ID.AddPointer(X);
}
};
template <typename T>
class ImmutableListFactory {
typedef ImmutableListImpl<T> ListTy;
typedef FoldingSet<ListTy> CacheTy;
CacheTy Cache;
uintptr_t Allocator;
bool ownsAllocator() const {
return Allocator & 0x1 ? false : true;
}
BumpPtrAllocator& getAllocator() const {
return *reinterpret_cast<BumpPtrAllocator*>(Allocator & ~0x1);
}
public:
ImmutableListFactory()
: Allocator(reinterpret_cast<uintptr_t>(new BumpPtrAllocator())) {}
ImmutableListFactory(BumpPtrAllocator& Alloc)
: Allocator(reinterpret_cast<uintptr_t>(&Alloc) | 0x1) {}
~ImmutableListFactory() {
if (ownsAllocator()) delete &getAllocator();
}
ImmutableList<T> concat(const T& Head, ImmutableList<T> Tail) {
// Profile the new list to see if it already exists in our cache.
FoldingSetNodeID ID;
void* InsertPos;
const ListTy* TailImpl = Tail.getInternalPointer();
ListTy::Profile(ID, Head, TailImpl);
ListTy* L = Cache.FindNodeOrInsertPos(ID, InsertPos);
if (!L) {
// The list does not exist in our cache. Create it.
BumpPtrAllocator& A = getAllocator();
L = (ListTy*) A.Allocate<ListTy>();
new (L) ListTy(Head, TailImpl);
// Insert the new list into the cache.
Cache.InsertNode(L, InsertPos);
}
return L;
}
ImmutableList<T> add(const T& D, ImmutableList<T> L) {
return concat(D, L);
}
ImmutableList<T> getEmptyList() const {
return ImmutableList<T>(0);
}
ImmutableList<T> create(const T& X) {
return Concat(X, getEmptyList());
}
};
//===----------------------------------------------------------------------===//
// Partially-specialized Traits.
//===----------------------------------------------------------------------===//
template<typename T> struct DenseMapInfo;
template<typename T> struct DenseMapInfo<ImmutableList<T> > {
static inline ImmutableList<T> getEmptyKey() {
return reinterpret_cast<ImmutableListImpl<T>*>(-1);
}
static inline ImmutableList<T> getTombstoneKey() {
return reinterpret_cast<ImmutableListImpl<T>*>(-2);
}
static unsigned getHashValue(ImmutableList<T> X) {
uintptr_t PtrVal = reinterpret_cast<uintptr_t>(X.getInternalPointer());
return (unsigned((uintptr_t)PtrVal) >> 4) ^
(unsigned((uintptr_t)PtrVal) >> 9);
}
static bool isEqual(ImmutableList<T> X1, ImmutableList<T> X2) {
return X1 == X2;
}
};
template <typename T> struct isPodLike;
template <typename T>
struct isPodLike<ImmutableList<T> > { static const bool value = true; };
} // end llvm namespace
#endif

View File

@@ -0,0 +1,438 @@
//===--- ImmutableMap.h - Immutable (functional) map interface --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the ImmutableMap class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_IMMUTABLEMAP_H
#define LLVM_ADT_IMMUTABLEMAP_H
#include "llvm/ADT/ImmutableSet.h"
namespace llvm {
/// ImutKeyValueInfo -Traits class used by ImmutableMap. While both the first
/// and second elements in a pair are used to generate profile information,
/// only the first element (the key) is used by isEqual and isLess.
template <typename T, typename S>
struct ImutKeyValueInfo {
typedef const std::pair<T,S> value_type;
typedef const value_type& value_type_ref;
typedef const T key_type;
typedef const T& key_type_ref;
typedef const S data_type;
typedef const S& data_type_ref;
static inline key_type_ref KeyOfValue(value_type_ref V) {
return V.first;
}
static inline data_type_ref DataOfValue(value_type_ref V) {
return V.second;
}
static inline bool isEqual(key_type_ref L, key_type_ref R) {
return ImutContainerInfo<T>::isEqual(L,R);
}
static inline bool isLess(key_type_ref L, key_type_ref R) {
return ImutContainerInfo<T>::isLess(L,R);
}
static inline bool isDataEqual(data_type_ref L, data_type_ref R) {
return ImutContainerInfo<S>::isEqual(L,R);
}
static inline void Profile(FoldingSetNodeID& ID, value_type_ref V) {
ImutContainerInfo<T>::Profile(ID, V.first);
ImutContainerInfo<S>::Profile(ID, V.second);
}
};
template <typename KeyT, typename ValT,
typename ValInfo = ImutKeyValueInfo<KeyT,ValT> >
class ImmutableMap {
public:
typedef typename ValInfo::value_type value_type;
typedef typename ValInfo::value_type_ref value_type_ref;
typedef typename ValInfo::key_type key_type;
typedef typename ValInfo::key_type_ref key_type_ref;
typedef typename ValInfo::data_type data_type;
typedef typename ValInfo::data_type_ref data_type_ref;
typedef ImutAVLTree<ValInfo> TreeTy;
protected:
TreeTy* Root;
public:
/// Constructs a map from a pointer to a tree root. In general one
/// should use a Factory object to create maps instead of directly
/// invoking the constructor, but there are cases where make this
/// constructor public is useful.
explicit ImmutableMap(const TreeTy* R) : Root(const_cast<TreeTy*>(R)) {
if (Root) { Root->retain(); }
}
ImmutableMap(const ImmutableMap &X) : Root(X.Root) {
if (Root) { Root->retain(); }
}
ImmutableMap &operator=(const ImmutableMap &X) {
if (Root != X.Root) {
if (X.Root) { X.Root->retain(); }
if (Root) { Root->release(); }
Root = X.Root;
}
return *this;
}
~ImmutableMap() {
if (Root) { Root->release(); }
}
class Factory {
typename TreeTy::Factory F;
const bool Canonicalize;
public:
Factory(bool canonicalize = true)
: Canonicalize(canonicalize) {}
Factory(BumpPtrAllocator& Alloc, bool canonicalize = true)
: F(Alloc), Canonicalize(canonicalize) {}
ImmutableMap getEmptyMap() { return ImmutableMap(F.getEmptyTree()); }
ImmutableMap add(ImmutableMap Old, key_type_ref K, data_type_ref D) {
TreeTy *T = F.add(Old.Root, std::pair<key_type,data_type>(K,D));
return ImmutableMap(Canonicalize ? F.getCanonicalTree(T): T);
}
ImmutableMap remove(ImmutableMap Old, key_type_ref K) {
TreeTy *T = F.remove(Old.Root,K);
return ImmutableMap(Canonicalize ? F.getCanonicalTree(T): T);
}
typename TreeTy::Factory *getTreeFactory() const {
return const_cast<typename TreeTy::Factory *>(&F);
}
private:
Factory(const Factory& RHS) LLVM_DELETED_FUNCTION;
void operator=(const Factory& RHS) LLVM_DELETED_FUNCTION;
};
bool contains(key_type_ref K) const {
return Root ? Root->contains(K) : false;
}
bool operator==(const ImmutableMap &RHS) const {
return Root && RHS.Root ? Root->isEqual(*RHS.Root) : Root == RHS.Root;
}
bool operator!=(const ImmutableMap &RHS) const {
return Root && RHS.Root ? Root->isNotEqual(*RHS.Root) : Root != RHS.Root;
}
TreeTy *getRoot() const {
if (Root) { Root->retain(); }
return Root;
}
TreeTy *getRootWithoutRetain() const {
return Root;
}
void manualRetain() {
if (Root) Root->retain();
}
void manualRelease() {
if (Root) Root->release();
}
bool isEmpty() const { return !Root; }
//===--------------------------------------------------===//
// Foreach - A limited form of map iteration.
//===--------------------------------------------------===//
private:
template <typename Callback>
struct CBWrapper {
Callback C;
void operator()(value_type_ref V) { C(V.first,V.second); }
};
template <typename Callback>
struct CBWrapperRef {
Callback &C;
CBWrapperRef(Callback& c) : C(c) {}
void operator()(value_type_ref V) { C(V.first,V.second); }
};
public:
template <typename Callback>
void foreach(Callback& C) {
if (Root) {
CBWrapperRef<Callback> CB(C);
Root->foreach(CB);
}
}
template <typename Callback>
void foreach() {
if (Root) {
CBWrapper<Callback> CB;
Root->foreach(CB);
}
}
//===--------------------------------------------------===//
// For testing.
//===--------------------------------------------------===//
void verify() const { if (Root) Root->verify(); }
//===--------------------------------------------------===//
// Iterators.
//===--------------------------------------------------===//
class iterator {
typename TreeTy::iterator itr;
iterator() {}
iterator(TreeTy* t) : itr(t) {}
friend class ImmutableMap;
public:
typedef typename ImmutableMap<KeyT,ValT,ValInfo>::value_type value_type;
typedef typename ImmutableMap<KeyT,ValT,ValInfo>::value_type_ref reference;
typedef typename iterator::value_type *pointer;
typedef std::bidirectional_iterator_tag iterator_category;
typename iterator::reference operator*() const { return itr->getValue(); }
typename iterator::pointer operator->() const { return &itr->getValue(); }
key_type_ref getKey() const { return itr->getValue().first; }
data_type_ref getData() const { return itr->getValue().second; }
iterator& operator++() { ++itr; return *this; }
iterator operator++(int) { iterator tmp(*this); ++itr; return tmp; }
iterator& operator--() { --itr; return *this; }
iterator operator--(int) { iterator tmp(*this); --itr; return tmp; }
bool operator==(const iterator& RHS) const { return RHS.itr == itr; }
bool operator!=(const iterator& RHS) const { return RHS.itr != itr; }
};
iterator begin() const { return iterator(Root); }
iterator end() const { return iterator(); }
data_type* lookup(key_type_ref K) const {
if (Root) {
TreeTy* T = Root->find(K);
if (T) return &T->getValue().second;
}
return 0;
}
/// getMaxElement - Returns the <key,value> pair in the ImmutableMap for
/// which key is the highest in the ordering of keys in the map. This
/// method returns NULL if the map is empty.
value_type* getMaxElement() const {
return Root ? &(Root->getMaxElement()->getValue()) : 0;
}
//===--------------------------------------------------===//
// Utility methods.
//===--------------------------------------------------===//
unsigned getHeight() const { return Root ? Root->getHeight() : 0; }
static inline void Profile(FoldingSetNodeID& ID, const ImmutableMap& M) {
ID.AddPointer(M.Root);
}
inline void Profile(FoldingSetNodeID& ID) const {
return Profile(ID,*this);
}
};
// NOTE: This will possibly become the new implementation of ImmutableMap some day.
template <typename KeyT, typename ValT,
typename ValInfo = ImutKeyValueInfo<KeyT,ValT> >
class ImmutableMapRef {
public:
typedef typename ValInfo::value_type value_type;
typedef typename ValInfo::value_type_ref value_type_ref;
typedef typename ValInfo::key_type key_type;
typedef typename ValInfo::key_type_ref key_type_ref;
typedef typename ValInfo::data_type data_type;
typedef typename ValInfo::data_type_ref data_type_ref;
typedef ImutAVLTree<ValInfo> TreeTy;
typedef typename TreeTy::Factory FactoryTy;
protected:
TreeTy *Root;
FactoryTy *Factory;
public:
/// Constructs a map from a pointer to a tree root. In general one
/// should use a Factory object to create maps instead of directly
/// invoking the constructor, but there are cases where make this
/// constructor public is useful.
explicit ImmutableMapRef(const TreeTy* R, FactoryTy *F)
: Root(const_cast<TreeTy*>(R)),
Factory(F) {
if (Root) { Root->retain(); }
}
explicit ImmutableMapRef(const ImmutableMap<KeyT, ValT> &X,
typename ImmutableMap<KeyT, ValT>::Factory &F)
: Root(X.getRootWithoutRetain()),
Factory(F.getTreeFactory()) {
if (Root) { Root->retain(); }
}
ImmutableMapRef(const ImmutableMapRef &X)
: Root(X.Root),
Factory(X.Factory) {
if (Root) { Root->retain(); }
}
ImmutableMapRef &operator=(const ImmutableMapRef &X) {
if (Root != X.Root) {
if (X.Root)
X.Root->retain();
if (Root)
Root->release();
Root = X.Root;
Factory = X.Factory;
}
return *this;
}
~ImmutableMapRef() {
if (Root)
Root->release();
}
static inline ImmutableMapRef getEmptyMap(FactoryTy *F) {
return ImmutableMapRef(0, F);
}
void manualRetain() {
if (Root) Root->retain();
}
void manualRelease() {
if (Root) Root->release();
}
ImmutableMapRef add(key_type_ref K, data_type_ref D) const {
TreeTy *NewT = Factory->add(Root, std::pair<key_type, data_type>(K, D));
return ImmutableMapRef(NewT, Factory);
}
ImmutableMapRef remove(key_type_ref K) const {
TreeTy *NewT = Factory->remove(Root, K);
return ImmutableMapRef(NewT, Factory);
}
bool contains(key_type_ref K) const {
return Root ? Root->contains(K) : false;
}
ImmutableMap<KeyT, ValT> asImmutableMap() const {
return ImmutableMap<KeyT, ValT>(Factory->getCanonicalTree(Root));
}
bool operator==(const ImmutableMapRef &RHS) const {
return Root && RHS.Root ? Root->isEqual(*RHS.Root) : Root == RHS.Root;
}
bool operator!=(const ImmutableMapRef &RHS) const {
return Root && RHS.Root ? Root->isNotEqual(*RHS.Root) : Root != RHS.Root;
}
bool isEmpty() const { return !Root; }
//===--------------------------------------------------===//
// For testing.
//===--------------------------------------------------===//
void verify() const { if (Root) Root->verify(); }
//===--------------------------------------------------===//
// Iterators.
//===--------------------------------------------------===//
class iterator {
typename TreeTy::iterator itr;
iterator() {}
iterator(TreeTy* t) : itr(t) {}
friend class ImmutableMapRef;
public:
value_type_ref operator*() const { return itr->getValue(); }
value_type* operator->() const { return &itr->getValue(); }
key_type_ref getKey() const { return itr->getValue().first; }
data_type_ref getData() const { return itr->getValue().second; }
iterator& operator++() { ++itr; return *this; }
iterator operator++(int) { iterator tmp(*this); ++itr; return tmp; }
iterator& operator--() { --itr; return *this; }
iterator operator--(int) { iterator tmp(*this); --itr; return tmp; }
bool operator==(const iterator& RHS) const { return RHS.itr == itr; }
bool operator!=(const iterator& RHS) const { return RHS.itr != itr; }
};
iterator begin() const { return iterator(Root); }
iterator end() const { return iterator(); }
data_type* lookup(key_type_ref K) const {
if (Root) {
TreeTy* T = Root->find(K);
if (T) return &T->getValue().second;
}
return 0;
}
/// getMaxElement - Returns the <key,value> pair in the ImmutableMap for
/// which key is the highest in the ordering of keys in the map. This
/// method returns NULL if the map is empty.
value_type* getMaxElement() const {
return Root ? &(Root->getMaxElement()->getValue()) : 0;
}
//===--------------------------------------------------===//
// Utility methods.
//===--------------------------------------------------===//
unsigned getHeight() const { return Root ? Root->getHeight() : 0; }
static inline void Profile(FoldingSetNodeID& ID, const ImmutableMapRef &M) {
ID.AddPointer(M.Root);
}
inline void Profile(FoldingSetNodeID& ID) const {
return Profile(ID, *this);
}
};
} // end namespace llvm
#endif

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,77 @@
//===- InMemoryStruct.h - Indirect Struct Access Smart Pointer --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_INMEMORYSTRUCT_H
#define LLVM_ADT_INMEMORYSTRUCT_H
#include <cassert>
namespace llvm {
/// \brief Helper object for abstracting access to an in-memory structure which
/// may require some kind of temporary storage.
///
/// This class is designed to be used for accessing file data structures which
/// in the common case can be accessed from a direct pointer to a memory mapped
/// object, but which in some cases may require indirect access to a temporary
/// structure (which, for example, may have undergone endianness translation).
template<typename T>
class InMemoryStruct {
typedef T value_type;
typedef value_type &reference;
typedef value_type *pointer;
typedef const value_type &const_reference;
typedef const value_type *const_pointer;
/// \brief The smart pointer target.
value_type *Target;
/// \brief A temporary object which can be used as a target of the smart
/// pointer.
value_type Contents;
private:
public:
InMemoryStruct() : Target(0) {}
InMemoryStruct(reference Value) : Target(&Contents), Contents(Value) {}
InMemoryStruct(pointer Value) : Target(Value) {}
InMemoryStruct(const InMemoryStruct<T> &Value) { *this = Value; }
void operator=(const InMemoryStruct<T> &Value) {
if (Value.Target != &Value.Contents) {
Target = Value.Target;
} else {
Target = &Contents;
Contents = Value.Contents;
}
}
const_reference operator*() const {
assert(Target && "Cannot dereference null pointer");
return *Target;
}
reference operator*() {
assert(Target && "Cannot dereference null pointer");
return *Target;
}
const_pointer operator->() const {
return Target;
}
pointer operator->() {
return Target;
}
operator bool() const { return Target != 0; }
};
}
#endif

View File

@@ -0,0 +1,82 @@
//===- llvm/ADT/IndexedMap.h - An index map implementation ------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements an indexed map. The index map template takes two
// types. The first is the mapped type and the second is a functor
// that maps its argument to a size_t. On instantiation a "null" value
// can be provided to be used as a "does not exist" indicator in the
// map. A member function grow() is provided that given the value of
// the maximally indexed key (the argument of the functor) makes sure
// the map has enough space for it.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_INDEXEDMAP_H
#define LLVM_ADT_INDEXEDMAP_H
#include "llvm/ADT/STLExtras.h"
#include <cassert>
#include <functional>
#include <vector>
namespace llvm {
template <typename T, typename ToIndexT = llvm::identity<unsigned> >
class IndexedMap {
typedef typename ToIndexT::argument_type IndexT;
typedef std::vector<T> StorageT;
StorageT storage_;
T nullVal_;
ToIndexT toIndex_;
public:
IndexedMap() : nullVal_(T()) { }
explicit IndexedMap(const T& val) : nullVal_(val) { }
typename StorageT::reference operator[](IndexT n) {
assert(toIndex_(n) < storage_.size() && "index out of bounds!");
return storage_[toIndex_(n)];
}
typename StorageT::const_reference operator[](IndexT n) const {
assert(toIndex_(n) < storage_.size() && "index out of bounds!");
return storage_[toIndex_(n)];
}
void reserve(typename StorageT::size_type s) {
storage_.reserve(s);
}
void resize(typename StorageT::size_type s) {
storage_.resize(s, nullVal_);
}
void clear() {
storage_.clear();
}
void grow(IndexT n) {
unsigned NewSize = toIndex_(n) + 1;
if (NewSize > storage_.size())
resize(NewSize);
}
bool inBounds(IndexT n) const {
return toIndex_(n) < storage_.size();
}
typename StorageT::size_type size() const {
return storage_.size();
}
};
} // End llvm namespace
#endif

View File

@@ -0,0 +1,88 @@
//===-- llvm/ADT/IntEqClasses.h - Equiv. Classes of Integers ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Equivalence classes for small integers. This is a mapping of the integers
// 0 .. N-1 into M equivalence classes numbered 0 .. M-1.
//
// Initially each integer has its own equivalence class. Classes are joined by
// passing a representative member of each class to join().
//
// Once the classes are built, compress() will number them 0 .. M-1 and prevent
// further changes.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_INTEQCLASSES_H
#define LLVM_ADT_INTEQCLASSES_H
#include "llvm/ADT/SmallVector.h"
namespace llvm {
class IntEqClasses {
/// EC - When uncompressed, map each integer to a smaller member of its
/// equivalence class. The class leader is the smallest member and maps to
/// itself.
///
/// When compressed, EC[i] is the equivalence class of i.
SmallVector<unsigned, 8> EC;
/// NumClasses - The number of equivalence classes when compressed, or 0 when
/// uncompressed.
unsigned NumClasses;
public:
/// IntEqClasses - Create an equivalence class mapping for 0 .. N-1.
IntEqClasses(unsigned N = 0) : NumClasses(0) { grow(N); }
/// grow - Increase capacity to hold 0 .. N-1, putting new integers in unique
/// equivalence classes.
/// This requires an uncompressed map.
void grow(unsigned N);
/// clear - Clear all classes so that grow() will assign a unique class to
/// every integer.
void clear() {
EC.clear();
NumClasses = 0;
}
/// join - Join the equivalence classes of a and b. After joining classes,
/// findLeader(a) == findLeader(b).
/// This requires an uncompressed map.
void join(unsigned a, unsigned b);
/// findLeader - Compute the leader of a's equivalence class. This is the
/// smallest member of the class.
/// This requires an uncompressed map.
unsigned findLeader(unsigned a) const;
/// compress - Compress equivalence classes by numbering them 0 .. M.
/// This makes the equivalence class map immutable.
void compress();
/// getNumClasses - Return the number of equivalence classes after compress()
/// was called.
unsigned getNumClasses() const { return NumClasses; }
/// operator[] - Return a's equivalence class number, 0 .. getNumClasses()-1.
/// This requires a compressed map.
unsigned operator[](unsigned a) const {
assert(NumClasses && "operator[] called before compress()");
return EC[a];
}
/// uncompress - Change back to the uncompressed representation that allows
/// editing.
void uncompress();
};
} // End llvm namespace
#endif

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,243 @@
//== llvm/ADT/IntrusiveRefCntPtr.h - Smart Refcounting Pointer ---*- C++ -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines IntrusiveRefCntPtr, a template class that
// implements a "smart" pointer for objects that maintain their own
// internal reference count, and RefCountedBase/RefCountedBaseVPTR, two
// generic base classes for objects that wish to have their lifetimes
// managed using reference counting.
//
// IntrusiveRefCntPtr is similar to Boost's intrusive_ptr with added
// LLVM-style casting.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_INTRUSIVEREFCNTPTR_H
#define LLVM_ADT_INTRUSIVEREFCNTPTR_H
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include <memory>
namespace llvm {
template <class T>
class IntrusiveRefCntPtr;
//===----------------------------------------------------------------------===//
/// RefCountedBase - A generic base class for objects that wish to
/// have their lifetimes managed using reference counts. Classes
/// subclass RefCountedBase to obtain such functionality, and are
/// typically handled with IntrusiveRefCntPtr "smart pointers" (see below)
/// which automatically handle the management of reference counts.
/// Objects that subclass RefCountedBase should not be allocated on
/// the stack, as invoking "delete" (which is called when the
/// reference count hits 0) on such objects is an error.
//===----------------------------------------------------------------------===//
template <class Derived>
class RefCountedBase {
mutable unsigned ref_cnt;
public:
RefCountedBase() : ref_cnt(0) {}
RefCountedBase(const RefCountedBase &) : ref_cnt(0) {}
void Retain() const { ++ref_cnt; }
void Release() const {
assert (ref_cnt > 0 && "Reference count is already zero.");
if (--ref_cnt == 0) delete static_cast<const Derived*>(this);
}
};
//===----------------------------------------------------------------------===//
/// RefCountedBaseVPTR - A class that has the same function as
/// RefCountedBase, but with a virtual destructor. Should be used
/// instead of RefCountedBase for classes that already have virtual
/// methods to enforce dynamic allocation via 'new'. Classes that
/// inherit from RefCountedBaseVPTR can't be allocated on stack -
/// attempting to do this will produce a compile error.
//===----------------------------------------------------------------------===//
class RefCountedBaseVPTR {
mutable unsigned ref_cnt;
virtual void anchor();
protected:
RefCountedBaseVPTR() : ref_cnt(0) {}
RefCountedBaseVPTR(const RefCountedBaseVPTR &) : ref_cnt(0) {}
virtual ~RefCountedBaseVPTR() {}
void Retain() const { ++ref_cnt; }
void Release() const {
assert (ref_cnt > 0 && "Reference count is already zero.");
if (--ref_cnt == 0) delete this;
}
template <typename T>
friend struct IntrusiveRefCntPtrInfo;
};
template <typename T> struct IntrusiveRefCntPtrInfo {
static void retain(T *obj) { obj->Retain(); }
static void release(T *obj) { obj->Release(); }
};
//===----------------------------------------------------------------------===//
/// IntrusiveRefCntPtr - A template class that implements a "smart pointer"
/// that assumes the wrapped object has a reference count associated
/// with it that can be managed via calls to
/// IntrusivePtrAddRef/IntrusivePtrRelease. The smart pointers
/// manage reference counts via the RAII idiom: upon creation of
/// smart pointer the reference count of the wrapped object is
/// incremented and upon destruction of the smart pointer the
/// reference count is decremented. This class also safely handles
/// wrapping NULL pointers.
///
/// Reference counting is implemented via calls to
/// Obj->Retain()/Obj->Release(). Release() is required to destroy
/// the object when the reference count reaches zero. Inheriting from
/// RefCountedBase/RefCountedBaseVPTR takes care of this
/// automatically.
//===----------------------------------------------------------------------===//
template <typename T>
class IntrusiveRefCntPtr {
T* Obj;
typedef IntrusiveRefCntPtr this_type;
public:
typedef T element_type;
explicit IntrusiveRefCntPtr() : Obj(0) {}
IntrusiveRefCntPtr(T* obj) : Obj(obj) {
retain();
}
IntrusiveRefCntPtr(const IntrusiveRefCntPtr& S) : Obj(S.Obj) {
retain();
}
#if LLVM_HAS_RVALUE_REFERENCES
IntrusiveRefCntPtr(IntrusiveRefCntPtr&& S) : Obj(S.Obj) {
S.Obj = 0;
}
template <class X>
IntrusiveRefCntPtr(IntrusiveRefCntPtr<X>&& S) : Obj(S.getPtr()) {
S.Obj = 0;
}
#endif
template <class X>
IntrusiveRefCntPtr(const IntrusiveRefCntPtr<X>& S)
: Obj(S.getPtr()) {
retain();
}
IntrusiveRefCntPtr& operator=(IntrusiveRefCntPtr S) {
swap(S);
return *this;
}
~IntrusiveRefCntPtr() { release(); }
T& operator*() const { return *Obj; }
T* operator->() const { return Obj; }
T* getPtr() const { return Obj; }
typedef T* (IntrusiveRefCntPtr::*unspecified_bool_type) () const;
operator unspecified_bool_type() const {
return Obj == 0 ? 0 : &IntrusiveRefCntPtr::getPtr;
}
void swap(IntrusiveRefCntPtr& other) {
T* tmp = other.Obj;
other.Obj = Obj;
Obj = tmp;
}
void reset() {
release();
Obj = 0;
}
void resetWithoutRelease() {
Obj = 0;
}
private:
void retain() { if (Obj) IntrusiveRefCntPtrInfo<T>::retain(Obj); }
void release() { if (Obj) IntrusiveRefCntPtrInfo<T>::release(Obj); }
};
template<class T, class U>
inline bool operator==(const IntrusiveRefCntPtr<T>& A,
const IntrusiveRefCntPtr<U>& B)
{
return A.getPtr() == B.getPtr();
}
template<class T, class U>
inline bool operator!=(const IntrusiveRefCntPtr<T>& A,
const IntrusiveRefCntPtr<U>& B)
{
return A.getPtr() != B.getPtr();
}
template<class T, class U>
inline bool operator==(const IntrusiveRefCntPtr<T>& A,
U* B)
{
return A.getPtr() == B;
}
template<class T, class U>
inline bool operator!=(const IntrusiveRefCntPtr<T>& A,
U* B)
{
return A.getPtr() != B;
}
template<class T, class U>
inline bool operator==(T* A,
const IntrusiveRefCntPtr<U>& B)
{
return A == B.getPtr();
}
template<class T, class U>
inline bool operator!=(T* A,
const IntrusiveRefCntPtr<U>& B)
{
return A != B.getPtr();
}
//===----------------------------------------------------------------------===//
// LLVM-style downcasting support for IntrusiveRefCntPtr objects
//===----------------------------------------------------------------------===//
template<class T> struct simplify_type<IntrusiveRefCntPtr<T> > {
typedef T* SimpleType;
static SimpleType getSimplifiedValue(IntrusiveRefCntPtr<T>& Val) {
return Val.getPtr();
}
};
template<class T> struct simplify_type<const IntrusiveRefCntPtr<T> > {
typedef /*const*/ T* SimpleType;
static SimpleType getSimplifiedValue(const IntrusiveRefCntPtr<T>& Val) {
return Val.getPtr();
}
};
} // end namespace llvm
#endif // LLVM_ADT_INTRUSIVEREFCNTPTR_H

View File

@@ -0,0 +1,132 @@
//===- llvm/ADT/MapVector.h - Map with deterministic value order *- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a map that provides insertion order iteration. The
// interface is purposefully minimal. The key is assumed to be cheap to copy
// and 2 copies are kept, one for indexing in a DenseMap, one for iteration in
// a std::vector.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_MAPVECTOR_H
#define LLVM_ADT_MAPVECTOR_H
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include <vector>
namespace llvm {
/// This class implements a map that also provides access to all stored values
/// in a deterministic order. The values are kept in a std::vector and the
/// mapping is done with DenseMap from Keys to indexes in that vector.
template<typename KeyT, typename ValueT,
typename MapType = llvm::DenseMap<KeyT, unsigned>,
typename VectorType = std::vector<std::pair<KeyT, ValueT> > >
class MapVector {
typedef typename VectorType::size_type SizeType;
MapType Map;
VectorType Vector;
public:
typedef typename VectorType::iterator iterator;
typedef typename VectorType::const_iterator const_iterator;
SizeType size() const {
return Vector.size();
}
iterator begin() {
return Vector.begin();
}
const_iterator begin() const {
return Vector.begin();
}
iterator end() {
return Vector.end();
}
const_iterator end() const {
return Vector.end();
}
bool empty() const {
return Vector.empty();
}
std::pair<KeyT, ValueT> &front() { return Vector.front(); }
const std::pair<KeyT, ValueT> &front() const { return Vector.front(); }
std::pair<KeyT, ValueT> &back() { return Vector.back(); }
const std::pair<KeyT, ValueT> &back() const { return Vector.back(); }
void clear() {
Map.clear();
Vector.clear();
}
ValueT &operator[](const KeyT &Key) {
std::pair<KeyT, unsigned> Pair = std::make_pair(Key, 0);
std::pair<typename MapType::iterator, bool> Result = Map.insert(Pair);
unsigned &I = Result.first->second;
if (Result.second) {
Vector.push_back(std::make_pair(Key, ValueT()));
I = Vector.size() - 1;
}
return Vector[I].second;
}
ValueT lookup(const KeyT &Key) const {
typename MapType::const_iterator Pos = Map.find(Key);
return Pos == Map.end()? ValueT() : Vector[Pos->second].second;
}
std::pair<iterator, bool> insert(const std::pair<KeyT, ValueT> &KV) {
std::pair<KeyT, unsigned> Pair = std::make_pair(KV.first, 0);
std::pair<typename MapType::iterator, bool> Result = Map.insert(Pair);
unsigned &I = Result.first->second;
if (Result.second) {
Vector.push_back(std::make_pair(KV.first, KV.second));
I = Vector.size() - 1;
return std::make_pair(llvm::prior(end()), true);
}
return std::make_pair(begin() + I, false);
}
unsigned count(const KeyT &Key) const {
typename MapType::const_iterator Pos = Map.find(Key);
return Pos == Map.end()? 0 : 1;
}
iterator find(const KeyT &Key) {
typename MapType::const_iterator Pos = Map.find(Key);
return Pos == Map.end()? Vector.end() :
(Vector.begin() + Pos->second);
}
const_iterator find(const KeyT &Key) const {
typename MapType::const_iterator Pos = Map.find(Key);
return Pos == Map.end()? Vector.end() :
(Vector.begin() + Pos->second);
}
/// \brief Remove the last element from the vector.
void pop_back() {
typename MapType::iterator Pos = Map.find(Vector.back().first);
Map.erase(Pos);
Vector.pop_back();
}
};
}
#endif

View File

@@ -0,0 +1,27 @@
//===-- None.h - Simple null value for implicit construction ------*- C++ -*-=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file provides None, an enumerator for use in implicit constructors
// of various (usually templated) types to make such construction more
// terse.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_NONE_H
#define LLVM_ADT_NONE_H
namespace llvm {
/// \brief A simple null object to allow implicit construction of Optional<T>
/// and similar types without having to spell out the specialization's name.
enum NoneType {
None
};
}
#endif

View File

@@ -0,0 +1,52 @@
//===- llvm/ADT/NullablePtr.h - A pointer that allows null ------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines and implements the NullablePtr class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_NULLABLEPTR_H
#define LLVM_ADT_NULLABLEPTR_H
#include <cassert>
#include <cstddef>
namespace llvm {
/// NullablePtr pointer wrapper - NullablePtr is used for APIs where a
/// potentially-null pointer gets passed around that must be explicitly handled
/// in lots of places. By putting a wrapper around the null pointer, it makes
/// it more likely that the null pointer case will be handled correctly.
template<class T>
class NullablePtr {
T *Ptr;
public:
NullablePtr(T *P = 0) : Ptr(P) {}
bool isNull() const { return Ptr == 0; }
bool isNonNull() const { return Ptr != 0; }
/// get - Return the pointer if it is non-null.
const T *get() const {
assert(Ptr && "Pointer wasn't checked for null!");
return Ptr;
}
/// get - Return the pointer if it is non-null.
T *get() {
assert(Ptr && "Pointer wasn't checked for null!");
return Ptr;
}
T *getPtrOrNull() { return Ptr; }
const T *getPtrOrNull() const { return Ptr; }
};
} // end namespace llvm
#endif

View File

@@ -0,0 +1,193 @@
//===-- Optional.h - Simple variant for passing optional values ---*- C++ -*-=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file provides Optional, a template class modeled in the spirit of
// OCaml's 'opt' variant. The idea is to strongly type whether or not
// a value can be optional.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_OPTIONAL_H
#define LLVM_ADT_OPTIONAL_H
#include "llvm/ADT/None.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/AlignOf.h"
#include <cassert>
#if LLVM_HAS_RVALUE_REFERENCES
#include <utility>
#endif
namespace llvm {
template<typename T>
class Optional {
AlignedCharArrayUnion<T> storage;
bool hasVal;
public:
Optional(NoneType) : hasVal(false) {}
explicit Optional() : hasVal(false) {}
Optional(const T &y) : hasVal(true) {
new (storage.buffer) T(y);
}
Optional(const Optional &O) : hasVal(O.hasVal) {
if (hasVal)
new (storage.buffer) T(*O);
}
#if LLVM_HAS_RVALUE_REFERENCES
Optional(T &&y) : hasVal(true) {
new (storage.buffer) T(std::forward<T>(y));
}
Optional(Optional<T> &&O) : hasVal(O) {
if (O) {
new (storage.buffer) T(std::move(*O));
O.reset();
}
}
Optional &operator=(T &&y) {
if (hasVal)
**this = std::move(y);
else {
new (storage.buffer) T(std::move(y));
hasVal = true;
}
return *this;
}
Optional &operator=(Optional &&O) {
if (!O)
reset();
else {
*this = std::move(*O);
O.reset();
}
return *this;
}
#endif
static inline Optional create(const T* y) {
return y ? Optional(*y) : Optional();
}
// FIXME: these assignments (& the equivalent const T&/const Optional& ctors)
// could be made more efficient by passing by value, possibly unifying them
// with the rvalue versions above - but this could place a different set of
// requirements (notably: the existence of a default ctor) when implemented
// in that way. Careful SFINAE to avoid such pitfalls would be required.
Optional &operator=(const T &y) {
if (hasVal)
**this = y;
else {
new (storage.buffer) T(y);
hasVal = true;
}
return *this;
}
Optional &operator=(const Optional &O) {
if (!O)
reset();
else
*this = *O;
return *this;
}
void reset() {
if (hasVal) {
(**this).~T();
hasVal = false;
}
}
~Optional() {
reset();
}
const T* getPointer() const { assert(hasVal); return reinterpret_cast<const T*>(storage.buffer); }
T* getPointer() { assert(hasVal); return reinterpret_cast<T*>(storage.buffer); }
const T& getValue() const LLVM_LVALUE_FUNCTION { assert(hasVal); return *getPointer(); }
T& getValue() LLVM_LVALUE_FUNCTION { assert(hasVal); return *getPointer(); }
LLVM_EXPLICIT operator bool() const { return hasVal; }
bool hasValue() const { return hasVal; }
const T* operator->() const { return getPointer(); }
T* operator->() { return getPointer(); }
const T& operator*() const LLVM_LVALUE_FUNCTION { assert(hasVal); return *getPointer(); }
T& operator*() LLVM_LVALUE_FUNCTION { assert(hasVal); return *getPointer(); }
#if LLVM_HAS_RVALUE_REFERENCE_THIS
T&& getValue() && { assert(hasVal); return std::move(*getPointer()); }
T&& operator*() && { assert(hasVal); return std::move(*getPointer()); }
#endif
};
template <typename T> struct isPodLike;
template <typename T> struct isPodLike<Optional<T> > {
// An Optional<T> is pod-like if T is.
static const bool value = isPodLike<T>::value;
};
/// \brief Poison comparison between two \c Optional objects. Clients needs to
/// explicitly compare the underlying values and account for empty \c Optional
/// objects.
///
/// This routine will never be defined. It returns \c void to help diagnose
/// errors at compile time.
template<typename T, typename U>
void operator==(const Optional<T> &X, const Optional<U> &Y);
/// \brief Poison comparison between two \c Optional objects. Clients needs to
/// explicitly compare the underlying values and account for empty \c Optional
/// objects.
///
/// This routine will never be defined. It returns \c void to help diagnose
/// errors at compile time.
template<typename T, typename U>
void operator!=(const Optional<T> &X, const Optional<U> &Y);
/// \brief Poison comparison between two \c Optional objects. Clients needs to
/// explicitly compare the underlying values and account for empty \c Optional
/// objects.
///
/// This routine will never be defined. It returns \c void to help diagnose
/// errors at compile time.
template<typename T, typename U>
void operator<(const Optional<T> &X, const Optional<U> &Y);
/// \brief Poison comparison between two \c Optional objects. Clients needs to
/// explicitly compare the underlying values and account for empty \c Optional
/// objects.
///
/// This routine will never be defined. It returns \c void to help diagnose
/// errors at compile time.
template<typename T, typename U>
void operator<=(const Optional<T> &X, const Optional<U> &Y);
/// \brief Poison comparison between two \c Optional objects. Clients needs to
/// explicitly compare the underlying values and account for empty \c Optional
/// objects.
///
/// This routine will never be defined. It returns \c void to help diagnose
/// errors at compile time.
template<typename T, typename U>
void operator>=(const Optional<T> &X, const Optional<U> &Y);
/// \brief Poison comparison between two \c Optional objects. Clients needs to
/// explicitly compare the underlying values and account for empty \c Optional
/// objects.
///
/// This routine will never be defined. It returns \c void to help diagnose
/// errors at compile time.
template<typename T, typename U>
void operator>(const Optional<T> &X, const Optional<U> &Y);
} // end llvm namespace
#endif

View File

@@ -0,0 +1,152 @@
//===- llvm/ADT/OwningPtr.h - Smart ptr that owns the pointee ---*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines and implements the OwningPtr class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_OWNINGPTR_H
#define LLVM_ADT_OWNINGPTR_H
#include "llvm/Support/Compiler.h"
#include <cassert>
#include <cstddef>
namespace llvm {
/// OwningPtr smart pointer - OwningPtr mimics a built-in pointer except that it
/// guarantees deletion of the object pointed to, either on destruction of the
/// OwningPtr or via an explicit reset(). Once created, ownership of the
/// pointee object can be taken away from OwningPtr by using the take method.
template<class T>
class OwningPtr {
OwningPtr(OwningPtr const &) LLVM_DELETED_FUNCTION;
OwningPtr &operator=(OwningPtr const &) LLVM_DELETED_FUNCTION;
T *Ptr;
public:
explicit OwningPtr(T *P = 0) : Ptr(P) {}
#if LLVM_HAS_RVALUE_REFERENCES
OwningPtr(OwningPtr &&Other) : Ptr(Other.take()) {}
OwningPtr &operator=(OwningPtr &&Other) {
reset(Other.take());
return *this;
}
#endif
~OwningPtr() {
delete Ptr;
}
/// reset - Change the current pointee to the specified pointer. Note that
/// calling this with any pointer (including a null pointer) deletes the
/// current pointer.
void reset(T *P = 0) {
if (P == Ptr) return;
T *Tmp = Ptr;
Ptr = P;
delete Tmp;
}
/// take - Reset the owning pointer to null and return its pointer. This does
/// not delete the pointer before returning it.
T *take() {
T *Tmp = Ptr;
Ptr = 0;
return Tmp;
}
T &operator*() const {
assert(Ptr && "Cannot dereference null pointer");
return *Ptr;
}
T *operator->() const { return Ptr; }
T *get() const { return Ptr; }
operator bool() const { return Ptr != 0; }
bool operator!() const { return Ptr == 0; }
void swap(OwningPtr &RHS) {
T *Tmp = RHS.Ptr;
RHS.Ptr = Ptr;
Ptr = Tmp;
}
};
template<class T>
inline void swap(OwningPtr<T> &a, OwningPtr<T> &b) {
a.swap(b);
}
/// OwningArrayPtr smart pointer - OwningArrayPtr provides the same
/// functionality as OwningPtr, except that it works for array types.
template<class T>
class OwningArrayPtr {
OwningArrayPtr(OwningArrayPtr const &) LLVM_DELETED_FUNCTION;
OwningArrayPtr &operator=(OwningArrayPtr const &) LLVM_DELETED_FUNCTION;
T *Ptr;
public:
explicit OwningArrayPtr(T *P = 0) : Ptr(P) {}
#if LLVM_HAS_RVALUE_REFERENCES
OwningArrayPtr(OwningArrayPtr &&Other) : Ptr(Other.take()) {}
OwningArrayPtr &operator=(OwningArrayPtr &&Other) {
reset(Other.take());
return *this;
}
#endif
~OwningArrayPtr() {
delete [] Ptr;
}
/// reset - Change the current pointee to the specified pointer. Note that
/// calling this with any pointer (including a null pointer) deletes the
/// current pointer.
void reset(T *P = 0) {
if (P == Ptr) return;
T *Tmp = Ptr;
Ptr = P;
delete [] Tmp;
}
/// take - Reset the owning pointer to null and return its pointer. This does
/// not delete the pointer before returning it.
T *take() {
T *Tmp = Ptr;
Ptr = 0;
return Tmp;
}
T &operator[](std::ptrdiff_t i) const {
assert(Ptr && "Cannot dereference null pointer");
return Ptr[i];
}
T *get() const { return Ptr; }
operator bool() const { return Ptr != 0; }
bool operator!() const { return Ptr == 0; }
void swap(OwningArrayPtr &RHS) {
T *Tmp = RHS.Ptr;
RHS.Ptr = Ptr;
Ptr = Tmp;
}
};
template<class T>
inline void swap(OwningArrayPtr<T> &a, OwningArrayPtr<T> &b) {
a.swap(b);
}
} // end namespace llvm
#endif

View File

@@ -0,0 +1,159 @@
//===- llvm/ADT/PackedVector.h - Packed values vector -----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the PackedVector class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_PACKEDVECTOR_H
#define LLVM_ADT_PACKEDVECTOR_H
#include "llvm/ADT/BitVector.h"
#include <limits>
namespace llvm {
template <typename T, unsigned BitNum, typename BitVectorTy, bool isSigned>
class PackedVectorBase;
// This won't be necessary if we can specialize members without specializing
// the parent template.
template <typename T, unsigned BitNum, typename BitVectorTy>
class PackedVectorBase<T, BitNum, BitVectorTy, false> {
protected:
static T getValue(const BitVectorTy &Bits, unsigned Idx) {
T val = T();
for (unsigned i = 0; i != BitNum; ++i)
val = T(val | ((Bits[(Idx << (BitNum-1)) + i] ? 1UL : 0UL) << i));
return val;
}
static void setValue(BitVectorTy &Bits, unsigned Idx, T val) {
assert((val >> BitNum) == 0 && "value is too big");
for (unsigned i = 0; i != BitNum; ++i)
Bits[(Idx << (BitNum-1)) + i] = val & (T(1) << i);
}
};
template <typename T, unsigned BitNum, typename BitVectorTy>
class PackedVectorBase<T, BitNum, BitVectorTy, true> {
protected:
static T getValue(const BitVectorTy &Bits, unsigned Idx) {
T val = T();
for (unsigned i = 0; i != BitNum-1; ++i)
val = T(val | ((Bits[(Idx << (BitNum-1)) + i] ? 1UL : 0UL) << i));
if (Bits[(Idx << (BitNum-1)) + BitNum-1])
val = ~val;
return val;
}
static void setValue(BitVectorTy &Bits, unsigned Idx, T val) {
if (val < 0) {
val = ~val;
Bits.set((Idx << (BitNum-1)) + BitNum-1);
}
assert((val >> (BitNum-1)) == 0 && "value is too big");
for (unsigned i = 0; i != BitNum-1; ++i)
Bits[(Idx << (BitNum-1)) + i] = val & (T(1) << i);
}
};
/// \brief Store a vector of values using a specific number of bits for each
/// value. Both signed and unsigned types can be used, e.g
/// @code
/// PackedVector<signed, 2> vec;
/// @endcode
/// will create a vector accepting values -2, -1, 0, 1. Any other value will hit
/// an assertion.
template <typename T, unsigned BitNum, typename BitVectorTy = BitVector>
class PackedVector : public PackedVectorBase<T, BitNum, BitVectorTy,
std::numeric_limits<T>::is_signed> {
BitVectorTy Bits;
typedef PackedVectorBase<T, BitNum, BitVectorTy,
std::numeric_limits<T>::is_signed> base;
public:
class reference {
PackedVector &Vec;
const unsigned Idx;
reference(); // Undefined
public:
reference(PackedVector &vec, unsigned idx) : Vec(vec), Idx(idx) { }
reference &operator=(T val) {
Vec.setValue(Vec.Bits, Idx, val);
return *this;
}
operator T() const {
return Vec.getValue(Vec.Bits, Idx);
}
};
PackedVector() { }
explicit PackedVector(unsigned size) : Bits(size << (BitNum-1)) { }
bool empty() const { return Bits.empty(); }
unsigned size() const { return Bits.size() >> (BitNum-1); }
void clear() { Bits.clear(); }
void resize(unsigned N) { Bits.resize(N << (BitNum-1)); }
void reserve(unsigned N) { Bits.reserve(N << (BitNum-1)); }
PackedVector &reset() {
Bits.reset();
return *this;
}
void push_back(T val) {
resize(size()+1);
(*this)[size()-1] = val;
}
reference operator[](unsigned Idx) {
return reference(*this, Idx);
}
T operator[](unsigned Idx) const {
return base::getValue(Bits, Idx);
}
bool operator==(const PackedVector &RHS) const {
return Bits == RHS.Bits;
}
bool operator!=(const PackedVector &RHS) const {
return Bits != RHS.Bits;
}
const PackedVector &operator=(const PackedVector &RHS) {
Bits = RHS.Bits;
return *this;
}
PackedVector &operator|=(const PackedVector &RHS) {
Bits |= RHS.Bits;
return *this;
}
void swap(PackedVector &RHS) {
Bits.swap(RHS.Bits);
}
};
// Leave BitNum=0 undefined.
template <typename T>
class PackedVector<T, 0>;
} // end llvm namespace
#endif

View File

@@ -0,0 +1,199 @@
//===- llvm/ADT/PointerIntPair.h - Pair for pointer and int -----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the PointerIntPair class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_POINTERINTPAIR_H
#define LLVM_ADT_POINTERINTPAIR_H
#include "llvm/Support/PointerLikeTypeTraits.h"
#include <cassert>
namespace llvm {
template<typename T>
struct DenseMapInfo;
/// PointerIntPair - This class implements a pair of a pointer and small
/// integer. It is designed to represent this in the space required by one
/// pointer by bitmangling the integer into the low part of the pointer. This
/// can only be done for small integers: typically up to 3 bits, but it depends
/// on the number of bits available according to PointerLikeTypeTraits for the
/// type.
///
/// Note that PointerIntPair always puts the IntVal part in the highest bits
/// possible. For example, PointerIntPair<void*, 1, bool> will put the bit for
/// the bool into bit #2, not bit #0, which allows the low two bits to be used
/// for something else. For example, this allows:
/// PointerIntPair<PointerIntPair<void*, 1, bool>, 1, bool>
/// ... and the two bools will land in different bits.
///
template <typename PointerTy, unsigned IntBits, typename IntType=unsigned,
typename PtrTraits = PointerLikeTypeTraits<PointerTy> >
class PointerIntPair {
intptr_t Value;
enum {
/// PointerBitMask - The bits that come from the pointer.
PointerBitMask =
~(uintptr_t)(((intptr_t)1 << PtrTraits::NumLowBitsAvailable)-1),
/// IntShift - The number of low bits that we reserve for other uses, and
/// keep zero.
IntShift = (uintptr_t)PtrTraits::NumLowBitsAvailable-IntBits,
/// IntMask - This is the unshifted mask for valid bits of the int type.
IntMask = (uintptr_t)(((intptr_t)1 << IntBits)-1),
// ShiftedIntMask - This is the bits for the integer shifted in place.
ShiftedIntMask = (uintptr_t)(IntMask << IntShift)
};
public:
PointerIntPair() : Value(0) {}
PointerIntPair(PointerTy PtrVal, IntType IntVal) {
assert(IntBits <= PtrTraits::NumLowBitsAvailable &&
"PointerIntPair formed with integer size too large for pointer");
setPointerAndInt(PtrVal, IntVal);
}
explicit PointerIntPair(PointerTy PtrVal) {
initWithPointer(PtrVal);
}
PointerTy getPointer() const {
return PtrTraits::getFromVoidPointer(
reinterpret_cast<void*>(Value & PointerBitMask));
}
IntType getInt() const {
return (IntType)((Value >> IntShift) & IntMask);
}
void setPointer(PointerTy PtrVal) {
intptr_t PtrWord
= reinterpret_cast<intptr_t>(PtrTraits::getAsVoidPointer(PtrVal));
assert((PtrWord & ((1 << PtrTraits::NumLowBitsAvailable)-1)) == 0 &&
"Pointer is not sufficiently aligned");
// Preserve all low bits, just update the pointer.
Value = PtrWord | (Value & ~PointerBitMask);
}
void setInt(IntType IntVal) {
intptr_t IntWord = static_cast<intptr_t>(IntVal);
assert(IntWord < (1 << IntBits) && "Integer too large for field");
// Preserve all bits other than the ones we are updating.
Value &= ~ShiftedIntMask; // Remove integer field.
Value |= IntWord << IntShift; // Set new integer.
}
void initWithPointer(PointerTy PtrVal) {
intptr_t PtrWord
= reinterpret_cast<intptr_t>(PtrTraits::getAsVoidPointer(PtrVal));
assert((PtrWord & ((1 << PtrTraits::NumLowBitsAvailable)-1)) == 0 &&
"Pointer is not sufficiently aligned");
Value = PtrWord;
}
void setPointerAndInt(PointerTy PtrVal, IntType IntVal) {
intptr_t PtrWord
= reinterpret_cast<intptr_t>(PtrTraits::getAsVoidPointer(PtrVal));
assert((PtrWord & ((1 << PtrTraits::NumLowBitsAvailable)-1)) == 0 &&
"Pointer is not sufficiently aligned");
intptr_t IntWord = static_cast<intptr_t>(IntVal);
assert(IntWord < (1 << IntBits) && "Integer too large for field");
Value = PtrWord | (IntWord << IntShift);
}
PointerTy const *getAddrOfPointer() const {
return const_cast<PointerIntPair *>(this)->getAddrOfPointer();
}
PointerTy *getAddrOfPointer() {
assert(Value == reinterpret_cast<intptr_t>(getPointer()) &&
"Can only return the address if IntBits is cleared and "
"PtrTraits doesn't change the pointer");
return reinterpret_cast<PointerTy *>(&Value);
}
void *getOpaqueValue() const { return reinterpret_cast<void*>(Value); }
void setFromOpaqueValue(void *Val) { Value = reinterpret_cast<intptr_t>(Val);}
static PointerIntPair getFromOpaqueValue(void *V) {
PointerIntPair P; P.setFromOpaqueValue(V); return P;
}
// Allow PointerIntPairs to be created from const void * if and only if the
// pointer type could be created from a const void *.
static PointerIntPair getFromOpaqueValue(const void *V) {
(void)PtrTraits::getFromVoidPointer(V);
return getFromOpaqueValue(const_cast<void *>(V));
}
bool operator==(const PointerIntPair &RHS) const {return Value == RHS.Value;}
bool operator!=(const PointerIntPair &RHS) const {return Value != RHS.Value;}
bool operator<(const PointerIntPair &RHS) const {return Value < RHS.Value;}
bool operator>(const PointerIntPair &RHS) const {return Value > RHS.Value;}
bool operator<=(const PointerIntPair &RHS) const {return Value <= RHS.Value;}
bool operator>=(const PointerIntPair &RHS) const {return Value >= RHS.Value;}
};
template <typename T> struct isPodLike;
template<typename PointerTy, unsigned IntBits, typename IntType>
struct isPodLike<PointerIntPair<PointerTy, IntBits, IntType> > {
static const bool value = true;
};
// Provide specialization of DenseMapInfo for PointerIntPair.
template<typename PointerTy, unsigned IntBits, typename IntType>
struct DenseMapInfo<PointerIntPair<PointerTy, IntBits, IntType> > {
typedef PointerIntPair<PointerTy, IntBits, IntType> Ty;
static Ty getEmptyKey() {
uintptr_t Val = static_cast<uintptr_t>(-1);
Val <<= PointerLikeTypeTraits<PointerTy>::NumLowBitsAvailable;
return Ty(reinterpret_cast<PointerTy>(Val), IntType((1 << IntBits)-1));
}
static Ty getTombstoneKey() {
uintptr_t Val = static_cast<uintptr_t>(-2);
Val <<= PointerLikeTypeTraits<PointerTy>::NumLowBitsAvailable;
return Ty(reinterpret_cast<PointerTy>(Val), IntType(0));
}
static unsigned getHashValue(Ty V) {
uintptr_t IV = reinterpret_cast<uintptr_t>(V.getOpaqueValue());
return unsigned(IV) ^ unsigned(IV >> 9);
}
static bool isEqual(const Ty &LHS, const Ty &RHS) { return LHS == RHS; }
};
// Teach SmallPtrSet that PointerIntPair is "basically a pointer".
template<typename PointerTy, unsigned IntBits, typename IntType,
typename PtrTraits>
class PointerLikeTypeTraits<PointerIntPair<PointerTy, IntBits, IntType,
PtrTraits> > {
public:
static inline void *
getAsVoidPointer(const PointerIntPair<PointerTy, IntBits, IntType> &P) {
return P.getOpaqueValue();
}
static inline PointerIntPair<PointerTy, IntBits, IntType>
getFromVoidPointer(void *P) {
return PointerIntPair<PointerTy, IntBits, IntType>::getFromOpaqueValue(P);
}
static inline PointerIntPair<PointerTy, IntBits, IntType>
getFromVoidPointer(const void *P) {
return PointerIntPair<PointerTy, IntBits, IntType>::getFromOpaqueValue(P);
}
enum {
NumLowBitsAvailable = PtrTraits::NumLowBitsAvailable - IntBits
};
};
} // end namespace llvm
#endif

View File

@@ -0,0 +1,447 @@
//===- llvm/ADT/PointerUnion.h - Discriminated Union of 2 Ptrs --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the PointerUnion class, which is a discriminated union of
// pointer types.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_POINTERUNION_H
#define LLVM_ADT_POINTERUNION_H
#include "llvm/ADT/PointerIntPair.h"
namespace llvm {
template <typename T>
struct PointerUnionTypeSelectorReturn {
typedef T Return;
};
/// \brief Get a type based on whether two types are the same or not. For:
/// @code
/// typedef typename PointerUnionTypeSelector<T1, T2, EQ, NE>::Return Ret;
/// @endcode
/// Ret will be EQ type if T1 is same as T2 or NE type otherwise.
template <typename T1, typename T2, typename RET_EQ, typename RET_NE>
struct PointerUnionTypeSelector {
typedef typename PointerUnionTypeSelectorReturn<RET_NE>::Return Return;
};
template <typename T, typename RET_EQ, typename RET_NE>
struct PointerUnionTypeSelector<T, T, RET_EQ, RET_NE> {
typedef typename PointerUnionTypeSelectorReturn<RET_EQ>::Return Return;
};
template <typename T1, typename T2, typename RET_EQ, typename RET_NE>
struct PointerUnionTypeSelectorReturn<
PointerUnionTypeSelector<T1, T2, RET_EQ, RET_NE> > {
typedef typename PointerUnionTypeSelector<T1, T2, RET_EQ, RET_NE>::Return
Return;
};
/// Provide PointerLikeTypeTraits for void* that is used by PointerUnion
/// for the two template arguments.
template <typename PT1, typename PT2>
class PointerUnionUIntTraits {
public:
static inline void *getAsVoidPointer(void *P) { return P; }
static inline void *getFromVoidPointer(void *P) { return P; }
enum {
PT1BitsAv = (int)(PointerLikeTypeTraits<PT1>::NumLowBitsAvailable),
PT2BitsAv = (int)(PointerLikeTypeTraits<PT2>::NumLowBitsAvailable),
NumLowBitsAvailable = PT1BitsAv < PT2BitsAv ? PT1BitsAv : PT2BitsAv
};
};
/// PointerUnion - This implements a discriminated union of two pointer types,
/// and keeps the discriminator bit-mangled into the low bits of the pointer.
/// This allows the implementation to be extremely efficient in space, but
/// permits a very natural and type-safe API.
///
/// Common use patterns would be something like this:
/// PointerUnion<int*, float*> P;
/// P = (int*)0;
/// printf("%d %d", P.is<int*>(), P.is<float*>()); // prints "1 0"
/// X = P.get<int*>(); // ok.
/// Y = P.get<float*>(); // runtime assertion failure.
/// Z = P.get<double*>(); // runtime assertion failure (regardless of tag)
/// P = (float*)0;
/// Y = P.get<float*>(); // ok.
/// X = P.get<int*>(); // runtime assertion failure.
template <typename PT1, typename PT2>
class PointerUnion {
public:
typedef PointerIntPair<void*, 1, bool,
PointerUnionUIntTraits<PT1,PT2> > ValTy;
private:
ValTy Val;
struct IsPT1 {
static const int Num = 0;
};
struct IsPT2 {
static const int Num = 1;
};
template <typename T>
struct UNION_DOESNT_CONTAIN_TYPE { };
public:
PointerUnion() {}
PointerUnion(PT1 V) : Val(
const_cast<void *>(PointerLikeTypeTraits<PT1>::getAsVoidPointer(V))) {
}
PointerUnion(PT2 V) : Val(
const_cast<void *>(PointerLikeTypeTraits<PT2>::getAsVoidPointer(V)), 1) {
}
/// isNull - Return true if the pointer held in the union is null,
/// regardless of which type it is.
bool isNull() const {
// Convert from the void* to one of the pointer types, to make sure that
// we recursively strip off low bits if we have a nested PointerUnion.
return !PointerLikeTypeTraits<PT1>::getFromVoidPointer(Val.getPointer());
}
operator bool() const { return !isNull(); }
/// is<T>() return true if the Union currently holds the type matching T.
template<typename T>
int is() const {
typedef typename
::llvm::PointerUnionTypeSelector<PT1, T, IsPT1,
::llvm::PointerUnionTypeSelector<PT2, T, IsPT2,
UNION_DOESNT_CONTAIN_TYPE<T> > >::Return Ty;
int TyNo = Ty::Num;
return static_cast<int>(Val.getInt()) == TyNo;
}
/// get<T>() - Return the value of the specified pointer type. If the
/// specified pointer type is incorrect, assert.
template<typename T>
T get() const {
assert(is<T>() && "Invalid accessor called");
return PointerLikeTypeTraits<T>::getFromVoidPointer(Val.getPointer());
}
/// dyn_cast<T>() - If the current value is of the specified pointer type,
/// return it, otherwise return null.
template<typename T>
T dyn_cast() const {
if (is<T>()) return get<T>();
return T();
}
/// \brief If the union is set to the first pointer type get an address
/// pointing to it.
PT1 const *getAddrOfPtr1() const {
return const_cast<PointerUnion *>(this)->getAddrOfPtr1();
}
/// \brief If the union is set to the first pointer type get an address
/// pointing to it.
PT1 *getAddrOfPtr1() {
assert(is<PT1>() && "Val is not the first pointer");
assert(get<PT1>() == Val.getPointer() &&
"Can't get the address because PointerLikeTypeTraits changes the ptr");
return (PT1 *)Val.getAddrOfPointer();
}
/// Assignment operators - Allow assigning into this union from either
/// pointer type, setting the discriminator to remember what it came from.
const PointerUnion &operator=(const PT1 &RHS) {
Val.initWithPointer(
const_cast<void *>(PointerLikeTypeTraits<PT1>::getAsVoidPointer(RHS)));
return *this;
}
const PointerUnion &operator=(const PT2 &RHS) {
Val.setPointerAndInt(
const_cast<void *>(PointerLikeTypeTraits<PT2>::getAsVoidPointer(RHS)),
1);
return *this;
}
void *getOpaqueValue() const { return Val.getOpaqueValue(); }
static inline PointerUnion getFromOpaqueValue(void *VP) {
PointerUnion V;
V.Val = ValTy::getFromOpaqueValue(VP);
return V;
}
};
// Teach SmallPtrSet that PointerUnion is "basically a pointer", that has
// # low bits available = min(PT1bits,PT2bits)-1.
template<typename PT1, typename PT2>
class PointerLikeTypeTraits<PointerUnion<PT1, PT2> > {
public:
static inline void *
getAsVoidPointer(const PointerUnion<PT1, PT2> &P) {
return P.getOpaqueValue();
}
static inline PointerUnion<PT1, PT2>
getFromVoidPointer(void *P) {
return PointerUnion<PT1, PT2>::getFromOpaqueValue(P);
}
// The number of bits available are the min of the two pointer types.
enum {
NumLowBitsAvailable =
PointerLikeTypeTraits<typename PointerUnion<PT1,PT2>::ValTy>
::NumLowBitsAvailable
};
};
/// PointerUnion3 - This is a pointer union of three pointer types. See
/// documentation for PointerUnion for usage.
template <typename PT1, typename PT2, typename PT3>
class PointerUnion3 {
public:
typedef PointerUnion<PT1, PT2> InnerUnion;
typedef PointerUnion<InnerUnion, PT3> ValTy;
private:
ValTy Val;
struct IsInnerUnion {
ValTy Val;
IsInnerUnion(ValTy val) : Val(val) { }
template<typename T>
int is() const {
return Val.template is<InnerUnion>() &&
Val.template get<InnerUnion>().template is<T>();
}
template<typename T>
T get() const {
return Val.template get<InnerUnion>().template get<T>();
}
};
struct IsPT3 {
ValTy Val;
IsPT3(ValTy val) : Val(val) { }
template<typename T>
int is() const {
return Val.template is<T>();
}
template<typename T>
T get() const {
return Val.template get<T>();
}
};
public:
PointerUnion3() {}
PointerUnion3(PT1 V) {
Val = InnerUnion(V);
}
PointerUnion3(PT2 V) {
Val = InnerUnion(V);
}
PointerUnion3(PT3 V) {
Val = V;
}
/// isNull - Return true if the pointer held in the union is null,
/// regardless of which type it is.
bool isNull() const { return Val.isNull(); }
operator bool() const { return !isNull(); }
/// is<T>() return true if the Union currently holds the type matching T.
template<typename T>
int is() const {
// If T is PT1/PT2 choose IsInnerUnion otherwise choose IsPT3.
typedef typename
::llvm::PointerUnionTypeSelector<PT1, T, IsInnerUnion,
::llvm::PointerUnionTypeSelector<PT2, T, IsInnerUnion, IsPT3 >
>::Return Ty;
return Ty(Val).template is<T>();
}
/// get<T>() - Return the value of the specified pointer type. If the
/// specified pointer type is incorrect, assert.
template<typename T>
T get() const {
assert(is<T>() && "Invalid accessor called");
// If T is PT1/PT2 choose IsInnerUnion otherwise choose IsPT3.
typedef typename
::llvm::PointerUnionTypeSelector<PT1, T, IsInnerUnion,
::llvm::PointerUnionTypeSelector<PT2, T, IsInnerUnion, IsPT3 >
>::Return Ty;
return Ty(Val).template get<T>();
}
/// dyn_cast<T>() - If the current value is of the specified pointer type,
/// return it, otherwise return null.
template<typename T>
T dyn_cast() const {
if (is<T>()) return get<T>();
return T();
}
/// Assignment operators - Allow assigning into this union from either
/// pointer type, setting the discriminator to remember what it came from.
const PointerUnion3 &operator=(const PT1 &RHS) {
Val = InnerUnion(RHS);
return *this;
}
const PointerUnion3 &operator=(const PT2 &RHS) {
Val = InnerUnion(RHS);
return *this;
}
const PointerUnion3 &operator=(const PT3 &RHS) {
Val = RHS;
return *this;
}
void *getOpaqueValue() const { return Val.getOpaqueValue(); }
static inline PointerUnion3 getFromOpaqueValue(void *VP) {
PointerUnion3 V;
V.Val = ValTy::getFromOpaqueValue(VP);
return V;
}
};
// Teach SmallPtrSet that PointerUnion3 is "basically a pointer", that has
// # low bits available = min(PT1bits,PT2bits,PT2bits)-2.
template<typename PT1, typename PT2, typename PT3>
class PointerLikeTypeTraits<PointerUnion3<PT1, PT2, PT3> > {
public:
static inline void *
getAsVoidPointer(const PointerUnion3<PT1, PT2, PT3> &P) {
return P.getOpaqueValue();
}
static inline PointerUnion3<PT1, PT2, PT3>
getFromVoidPointer(void *P) {
return PointerUnion3<PT1, PT2, PT3>::getFromOpaqueValue(P);
}
// The number of bits available are the min of the two pointer types.
enum {
NumLowBitsAvailable =
PointerLikeTypeTraits<typename PointerUnion3<PT1, PT2, PT3>::ValTy>
::NumLowBitsAvailable
};
};
/// PointerUnion4 - This is a pointer union of four pointer types. See
/// documentation for PointerUnion for usage.
template <typename PT1, typename PT2, typename PT3, typename PT4>
class PointerUnion4 {
public:
typedef PointerUnion<PT1, PT2> InnerUnion1;
typedef PointerUnion<PT3, PT4> InnerUnion2;
typedef PointerUnion<InnerUnion1, InnerUnion2> ValTy;
private:
ValTy Val;
public:
PointerUnion4() {}
PointerUnion4(PT1 V) {
Val = InnerUnion1(V);
}
PointerUnion4(PT2 V) {
Val = InnerUnion1(V);
}
PointerUnion4(PT3 V) {
Val = InnerUnion2(V);
}
PointerUnion4(PT4 V) {
Val = InnerUnion2(V);
}
/// isNull - Return true if the pointer held in the union is null,
/// regardless of which type it is.
bool isNull() const { return Val.isNull(); }
operator bool() const { return !isNull(); }
/// is<T>() return true if the Union currently holds the type matching T.
template<typename T>
int is() const {
// If T is PT1/PT2 choose InnerUnion1 otherwise choose InnerUnion2.
typedef typename
::llvm::PointerUnionTypeSelector<PT1, T, InnerUnion1,
::llvm::PointerUnionTypeSelector<PT2, T, InnerUnion1, InnerUnion2 >
>::Return Ty;
return Val.template is<Ty>() &&
Val.template get<Ty>().template is<T>();
}
/// get<T>() - Return the value of the specified pointer type. If the
/// specified pointer type is incorrect, assert.
template<typename T>
T get() const {
assert(is<T>() && "Invalid accessor called");
// If T is PT1/PT2 choose InnerUnion1 otherwise choose InnerUnion2.
typedef typename
::llvm::PointerUnionTypeSelector<PT1, T, InnerUnion1,
::llvm::PointerUnionTypeSelector<PT2, T, InnerUnion1, InnerUnion2 >
>::Return Ty;
return Val.template get<Ty>().template get<T>();
}
/// dyn_cast<T>() - If the current value is of the specified pointer type,
/// return it, otherwise return null.
template<typename T>
T dyn_cast() const {
if (is<T>()) return get<T>();
return T();
}
/// Assignment operators - Allow assigning into this union from either
/// pointer type, setting the discriminator to remember what it came from.
const PointerUnion4 &operator=(const PT1 &RHS) {
Val = InnerUnion1(RHS);
return *this;
}
const PointerUnion4 &operator=(const PT2 &RHS) {
Val = InnerUnion1(RHS);
return *this;
}
const PointerUnion4 &operator=(const PT3 &RHS) {
Val = InnerUnion2(RHS);
return *this;
}
const PointerUnion4 &operator=(const PT4 &RHS) {
Val = InnerUnion2(RHS);
return *this;
}
void *getOpaqueValue() const { return Val.getOpaqueValue(); }
static inline PointerUnion4 getFromOpaqueValue(void *VP) {
PointerUnion4 V;
V.Val = ValTy::getFromOpaqueValue(VP);
return V;
}
};
// Teach SmallPtrSet that PointerUnion4 is "basically a pointer", that has
// # low bits available = min(PT1bits,PT2bits,PT2bits)-2.
template<typename PT1, typename PT2, typename PT3, typename PT4>
class PointerLikeTypeTraits<PointerUnion4<PT1, PT2, PT3, PT4> > {
public:
static inline void *
getAsVoidPointer(const PointerUnion4<PT1, PT2, PT3, PT4> &P) {
return P.getOpaqueValue();
}
static inline PointerUnion4<PT1, PT2, PT3, PT4>
getFromVoidPointer(void *P) {
return PointerUnion4<PT1, PT2, PT3, PT4>::getFromOpaqueValue(P);
}
// The number of bits available are the min of the two pointer types.
enum {
NumLowBitsAvailable =
PointerLikeTypeTraits<typename PointerUnion4<PT1, PT2, PT3, PT4>::ValTy>
::NumLowBitsAvailable
};
};
}
#endif

View File

@@ -0,0 +1,279 @@
//===- llvm/ADT/PostOrderIterator.h - PostOrder iterator --------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file builds on the ADT/GraphTraits.h file to build a generic graph
// post order iterator. This should work over any graph type that has a
// GraphTraits specialization.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_POSTORDERITERATOR_H
#define LLVM_ADT_POSTORDERITERATOR_H
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/SmallPtrSet.h"
#include <set>
#include <vector>
namespace llvm {
// The po_iterator_storage template provides access to the set of already
// visited nodes during the po_iterator's depth-first traversal.
//
// The default implementation simply contains a set of visited nodes, while
// the Extended=true version uses a reference to an external set.
//
// It is possible to prune the depth-first traversal in several ways:
//
// - When providing an external set that already contains some graph nodes,
// those nodes won't be visited again. This is useful for restarting a
// post-order traversal on a graph with nodes that aren't dominated by a
// single node.
//
// - By providing a custom SetType class, unwanted graph nodes can be excluded
// by having the insert() function return false. This could for example
// confine a CFG traversal to blocks in a specific loop.
//
// - Finally, by specializing the po_iterator_storage template itself, graph
// edges can be pruned by returning false in the insertEdge() function. This
// could be used to remove loop back-edges from the CFG seen by po_iterator.
//
// A specialized po_iterator_storage class can observe both the pre-order and
// the post-order. The insertEdge() function is called in a pre-order, while
// the finishPostorder() function is called just before the po_iterator moves
// on to the next node.
/// Default po_iterator_storage implementation with an internal set object.
template<class SetType, bool External>
class po_iterator_storage {
SetType Visited;
public:
// Return true if edge destination should be visited.
template<typename NodeType>
bool insertEdge(NodeType *From, NodeType *To) {
return Visited.insert(To);
}
// Called after all children of BB have been visited.
template<typename NodeType>
void finishPostorder(NodeType *BB) {}
};
/// Specialization of po_iterator_storage that references an external set.
template<class SetType>
class po_iterator_storage<SetType, true> {
SetType &Visited;
public:
po_iterator_storage(SetType &VSet) : Visited(VSet) {}
po_iterator_storage(const po_iterator_storage &S) : Visited(S.Visited) {}
// Return true if edge destination should be visited, called with From = 0 for
// the root node.
// Graph edges can be pruned by specializing this function.
template<class NodeType>
bool insertEdge(NodeType *From, NodeType *To) { return Visited.insert(To); }
// Called after all children of BB have been visited.
template<class NodeType>
void finishPostorder(NodeType *BB) {}
};
template<class GraphT,
class SetType = llvm::SmallPtrSet<typename GraphTraits<GraphT>::NodeType*, 8>,
bool ExtStorage = false,
class GT = GraphTraits<GraphT> >
class po_iterator : public std::iterator<std::forward_iterator_tag,
typename GT::NodeType, ptrdiff_t>,
public po_iterator_storage<SetType, ExtStorage> {
typedef std::iterator<std::forward_iterator_tag,
typename GT::NodeType, ptrdiff_t> super;
typedef typename GT::NodeType NodeType;
typedef typename GT::ChildIteratorType ChildItTy;
// VisitStack - Used to maintain the ordering. Top = current block
// First element is basic block pointer, second is the 'next child' to visit
std::vector<std::pair<NodeType *, ChildItTy> > VisitStack;
void traverseChild() {
while (VisitStack.back().second != GT::child_end(VisitStack.back().first)) {
NodeType *BB = *VisitStack.back().second++;
if (this->insertEdge(VisitStack.back().first, BB)) {
// If the block is not visited...
VisitStack.push_back(std::make_pair(BB, GT::child_begin(BB)));
}
}
}
inline po_iterator(NodeType *BB) {
this->insertEdge((NodeType*)0, BB);
VisitStack.push_back(std::make_pair(BB, GT::child_begin(BB)));
traverseChild();
}
inline po_iterator() {} // End is when stack is empty.
inline po_iterator(NodeType *BB, SetType &S) :
po_iterator_storage<SetType, ExtStorage>(S) {
if (this->insertEdge((NodeType*)0, BB)) {
VisitStack.push_back(std::make_pair(BB, GT::child_begin(BB)));
traverseChild();
}
}
inline po_iterator(SetType &S) :
po_iterator_storage<SetType, ExtStorage>(S) {
} // End is when stack is empty.
public:
typedef typename super::pointer pointer;
typedef po_iterator<GraphT, SetType, ExtStorage, GT> _Self;
// Provide static "constructors"...
static inline _Self begin(GraphT G) { return _Self(GT::getEntryNode(G)); }
static inline _Self end (GraphT G) { return _Self(); }
static inline _Self begin(GraphT G, SetType &S) {
return _Self(GT::getEntryNode(G), S);
}
static inline _Self end (GraphT G, SetType &S) { return _Self(S); }
inline bool operator==(const _Self& x) const {
return VisitStack == x.VisitStack;
}
inline bool operator!=(const _Self& x) const { return !operator==(x); }
inline pointer operator*() const {
return VisitStack.back().first;
}
// This is a nonstandard operator-> that dereferences the pointer an extra
// time... so that you can actually call methods ON the BasicBlock, because
// the contained type is a pointer. This allows BBIt->getTerminator() f.e.
//
inline NodeType *operator->() const { return operator*(); }
inline _Self& operator++() { // Preincrement
this->finishPostorder(VisitStack.back().first);
VisitStack.pop_back();
if (!VisitStack.empty())
traverseChild();
return *this;
}
inline _Self operator++(int) { // Postincrement
_Self tmp = *this; ++*this; return tmp;
}
};
// Provide global constructors that automatically figure out correct types...
//
template <class T>
po_iterator<T> po_begin(T G) { return po_iterator<T>::begin(G); }
template <class T>
po_iterator<T> po_end (T G) { return po_iterator<T>::end(G); }
// Provide global definitions of external postorder iterators...
template<class T, class SetType=std::set<typename GraphTraits<T>::NodeType*> >
struct po_ext_iterator : public po_iterator<T, SetType, true> {
po_ext_iterator(const po_iterator<T, SetType, true> &V) :
po_iterator<T, SetType, true>(V) {}
};
template<class T, class SetType>
po_ext_iterator<T, SetType> po_ext_begin(T G, SetType &S) {
return po_ext_iterator<T, SetType>::begin(G, S);
}
template<class T, class SetType>
po_ext_iterator<T, SetType> po_ext_end(T G, SetType &S) {
return po_ext_iterator<T, SetType>::end(G, S);
}
// Provide global definitions of inverse post order iterators...
template <class T,
class SetType = std::set<typename GraphTraits<T>::NodeType*>,
bool External = false>
struct ipo_iterator : public po_iterator<Inverse<T>, SetType, External > {
ipo_iterator(const po_iterator<Inverse<T>, SetType, External> &V) :
po_iterator<Inverse<T>, SetType, External> (V) {}
};
template <class T>
ipo_iterator<T> ipo_begin(T G, bool Reverse = false) {
return ipo_iterator<T>::begin(G, Reverse);
}
template <class T>
ipo_iterator<T> ipo_end(T G){
return ipo_iterator<T>::end(G);
}
// Provide global definitions of external inverse postorder iterators...
template <class T,
class SetType = std::set<typename GraphTraits<T>::NodeType*> >
struct ipo_ext_iterator : public ipo_iterator<T, SetType, true> {
ipo_ext_iterator(const ipo_iterator<T, SetType, true> &V) :
ipo_iterator<T, SetType, true>(V) {}
ipo_ext_iterator(const po_iterator<Inverse<T>, SetType, true> &V) :
ipo_iterator<T, SetType, true>(V) {}
};
template <class T, class SetType>
ipo_ext_iterator<T, SetType> ipo_ext_begin(T G, SetType &S) {
return ipo_ext_iterator<T, SetType>::begin(G, S);
}
template <class T, class SetType>
ipo_ext_iterator<T, SetType> ipo_ext_end(T G, SetType &S) {
return ipo_ext_iterator<T, SetType>::end(G, S);
}
//===--------------------------------------------------------------------===//
// Reverse Post Order CFG iterator code
//===--------------------------------------------------------------------===//
//
// This is used to visit basic blocks in a method in reverse post order. This
// class is awkward to use because I don't know a good incremental algorithm to
// computer RPO from a graph. Because of this, the construction of the
// ReversePostOrderTraversal object is expensive (it must walk the entire graph
// with a postorder iterator to build the data structures). The moral of this
// story is: Don't create more ReversePostOrderTraversal classes than necessary.
//
// This class should be used like this:
// {
// ReversePostOrderTraversal<Function*> RPOT(FuncPtr); // Expensive to create
// for (rpo_iterator I = RPOT.begin(); I != RPOT.end(); ++I) {
// ...
// }
// for (rpo_iterator I = RPOT.begin(); I != RPOT.end(); ++I) {
// ...
// }
// }
//
template<class GraphT, class GT = GraphTraits<GraphT> >
class ReversePostOrderTraversal {
typedef typename GT::NodeType NodeType;
std::vector<NodeType*> Blocks; // Block list in normal PO order
inline void Initialize(NodeType *BB) {
std::copy(po_begin(BB), po_end(BB), std::back_inserter(Blocks));
}
public:
typedef typename std::vector<NodeType*>::reverse_iterator rpo_iterator;
inline ReversePostOrderTraversal(GraphT G) {
Initialize(GT::getEntryNode(G));
}
// Because we want a reverse post order, use reverse iterators from the vector
inline rpo_iterator begin() { return Blocks.rbegin(); }
inline rpo_iterator end() { return Blocks.rend(); }
};
} // End llvm namespace
#endif

View File

@@ -0,0 +1,84 @@
//===- llvm/ADT/PriorityQueue.h - Priority queues ---------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the PriorityQueue class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_PRIORITYQUEUE_H
#define LLVM_ADT_PRIORITYQUEUE_H
#include <algorithm>
#include <queue>
namespace llvm {
/// PriorityQueue - This class behaves like std::priority_queue and
/// provides a few additional convenience functions.
///
template<class T,
class Sequence = std::vector<T>,
class Compare = std::less<typename Sequence::value_type> >
class PriorityQueue : public std::priority_queue<T, Sequence, Compare> {
public:
explicit PriorityQueue(const Compare &compare = Compare(),
const Sequence &sequence = Sequence())
: std::priority_queue<T, Sequence, Compare>(compare, sequence)
{}
template<class Iterator>
PriorityQueue(Iterator begin, Iterator end,
const Compare &compare = Compare(),
const Sequence &sequence = Sequence())
: std::priority_queue<T, Sequence, Compare>(begin, end, compare, sequence)
{}
/// erase_one - Erase one element from the queue, regardless of its
/// position. This operation performs a linear search to find an element
/// equal to t, but then uses all logarithmic-time algorithms to do
/// the erase operation.
///
void erase_one(const T &t) {
// Linear-search to find the element.
typename Sequence::size_type i =
std::find(this->c.begin(), this->c.end(), t) - this->c.begin();
// Logarithmic-time heap bubble-up.
while (i != 0) {
typename Sequence::size_type parent = (i - 1) / 2;
this->c[i] = this->c[parent];
i = parent;
}
// The element we want to remove is now at the root, so we can use
// priority_queue's plain pop to remove it.
this->pop();
}
/// reheapify - If an element in the queue has changed in a way that
/// affects its standing in the comparison function, the queue's
/// internal state becomes invalid. Calling reheapify() resets the
/// queue's state, making it valid again. This operation has time
/// complexity proportional to the number of elements in the queue,
/// so don't plan to use it a lot.
///
void reheapify() {
std::make_heap(this->c.begin(), this->c.end(), this->comp);
}
/// clear - Erase all elements from the queue.
///
void clear() {
this->c.clear();
}
};
} // End llvm namespace
#endif

View File

@@ -0,0 +1,220 @@
//===---- ADT/SCCIterator.h - Strongly Connected Comp. Iter. ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This builds on the llvm/ADT/GraphTraits.h file to find the strongly connected
// components (SCCs) of a graph in O(N+E) time using Tarjan's DFS algorithm.
//
// The SCC iterator has the important property that if a node in SCC S1 has an
// edge to a node in SCC S2, then it visits S1 *after* S2.
//
// To visit S1 *before* S2, use the scc_iterator on the Inverse graph.
// (NOTE: This requires some simple wrappers and is not supported yet.)
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_SCCITERATOR_H
#define LLVM_ADT_SCCITERATOR_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/GraphTraits.h"
#include <vector>
namespace llvm {
//===----------------------------------------------------------------------===//
///
/// scc_iterator - Enumerate the SCCs of a directed graph, in
/// reverse topological order of the SCC DAG.
///
template<class GraphT, class GT = GraphTraits<GraphT> >
class scc_iterator
: public std::iterator<std::forward_iterator_tag,
std::vector<typename GT::NodeType>, ptrdiff_t> {
typedef typename GT::NodeType NodeType;
typedef typename GT::ChildIteratorType ChildItTy;
typedef std::vector<NodeType*> SccTy;
typedef std::iterator<std::forward_iterator_tag,
std::vector<typename GT::NodeType>, ptrdiff_t> super;
typedef typename super::reference reference;
typedef typename super::pointer pointer;
// The visit counters used to detect when a complete SCC is on the stack.
// visitNum is the global counter.
// nodeVisitNumbers are per-node visit numbers, also used as DFS flags.
unsigned visitNum;
DenseMap<NodeType *, unsigned> nodeVisitNumbers;
// SCCNodeStack - Stack holding nodes of the SCC.
std::vector<NodeType *> SCCNodeStack;
// CurrentSCC - The current SCC, retrieved using operator*().
SccTy CurrentSCC;
// VisitStack - Used to maintain the ordering. Top = current block
// First element is basic block pointer, second is the 'next child' to visit
std::vector<std::pair<NodeType *, ChildItTy> > VisitStack;
// MinVisitNumStack - Stack holding the "min" values for each node in the DFS.
// This is used to track the minimum uplink values for all children of
// the corresponding node on the VisitStack.
std::vector<unsigned> MinVisitNumStack;
// A single "visit" within the non-recursive DFS traversal.
void DFSVisitOne(NodeType *N) {
++visitNum; // Global counter for the visit order
nodeVisitNumbers[N] = visitNum;
SCCNodeStack.push_back(N);
MinVisitNumStack.push_back(visitNum);
VisitStack.push_back(std::make_pair(N, GT::child_begin(N)));
//dbgs() << "TarjanSCC: Node " << N <<
// " : visitNum = " << visitNum << "\n";
}
// The stack-based DFS traversal; defined below.
void DFSVisitChildren() {
assert(!VisitStack.empty());
while (VisitStack.back().second != GT::child_end(VisitStack.back().first)) {
// TOS has at least one more child so continue DFS
NodeType *childN = *VisitStack.back().second++;
if (!nodeVisitNumbers.count(childN)) {
// this node has never been seen.
DFSVisitOne(childN);
continue;
}
unsigned childNum = nodeVisitNumbers[childN];
if (MinVisitNumStack.back() > childNum)
MinVisitNumStack.back() = childNum;
}
}
// Compute the next SCC using the DFS traversal.
void GetNextSCC() {
assert(VisitStack.size() == MinVisitNumStack.size());
CurrentSCC.clear(); // Prepare to compute the next SCC
while (!VisitStack.empty()) {
DFSVisitChildren();
assert(VisitStack.back().second ==GT::child_end(VisitStack.back().first));
NodeType *visitingN = VisitStack.back().first;
unsigned minVisitNum = MinVisitNumStack.back();
VisitStack.pop_back();
MinVisitNumStack.pop_back();
if (!MinVisitNumStack.empty() && MinVisitNumStack.back() > minVisitNum)
MinVisitNumStack.back() = minVisitNum;
//dbgs() << "TarjanSCC: Popped node " << visitingN <<
// " : minVisitNum = " << minVisitNum << "; Node visit num = " <<
// nodeVisitNumbers[visitingN] << "\n";
if (minVisitNum != nodeVisitNumbers[visitingN])
continue;
// A full SCC is on the SCCNodeStack! It includes all nodes below
// visitingN on the stack. Copy those nodes to CurrentSCC,
// reset their minVisit values, and return (this suspends
// the DFS traversal till the next ++).
do {
CurrentSCC.push_back(SCCNodeStack.back());
SCCNodeStack.pop_back();
nodeVisitNumbers[CurrentSCC.back()] = ~0U;
} while (CurrentSCC.back() != visitingN);
return;
}
}
inline scc_iterator(NodeType *entryN) : visitNum(0) {
DFSVisitOne(entryN);
GetNextSCC();
}
inline scc_iterator() { /* End is when DFS stack is empty */ }
public:
typedef scc_iterator<GraphT, GT> _Self;
// Provide static "constructors"...
static inline _Self begin(const GraphT &G){return _Self(GT::getEntryNode(G));}
static inline _Self end (const GraphT &) { return _Self(); }
// Direct loop termination test: I.isAtEnd() is more efficient than I == end()
inline bool isAtEnd() const {
assert(!CurrentSCC.empty() || VisitStack.empty());
return CurrentSCC.empty();
}
inline bool operator==(const _Self& x) const {
return VisitStack == x.VisitStack && CurrentSCC == x.CurrentSCC;
}
inline bool operator!=(const _Self& x) const { return !operator==(x); }
// Iterator traversal: forward iteration only
inline _Self& operator++() { // Preincrement
GetNextSCC();
return *this;
}
inline _Self operator++(int) { // Postincrement
_Self tmp = *this; ++*this; return tmp;
}
// Retrieve a reference to the current SCC
inline const SccTy &operator*() const {
assert(!CurrentSCC.empty() && "Dereferencing END SCC iterator!");
return CurrentSCC;
}
inline SccTy &operator*() {
assert(!CurrentSCC.empty() && "Dereferencing END SCC iterator!");
return CurrentSCC;
}
// hasLoop() -- Test if the current SCC has a loop. If it has more than one
// node, this is trivially true. If not, it may still contain a loop if the
// node has an edge back to itself.
bool hasLoop() const {
assert(!CurrentSCC.empty() && "Dereferencing END SCC iterator!");
if (CurrentSCC.size() > 1) return true;
NodeType *N = CurrentSCC.front();
for (ChildItTy CI = GT::child_begin(N), CE=GT::child_end(N); CI != CE; ++CI)
if (*CI == N)
return true;
return false;
}
/// ReplaceNode - This informs the scc_iterator that the specified Old node
/// has been deleted, and New is to be used in its place.
void ReplaceNode(NodeType *Old, NodeType *New) {
assert(nodeVisitNumbers.count(Old) && "Old not in scc_iterator?");
nodeVisitNumbers[New] = nodeVisitNumbers[Old];
nodeVisitNumbers.erase(Old);
}
};
// Global constructor for the SCC iterator.
template <class T>
scc_iterator<T> scc_begin(const T &G) {
return scc_iterator<T>::begin(G);
}
template <class T>
scc_iterator<T> scc_end(const T &G) {
return scc_iterator<T>::end(G);
}
template <class T>
scc_iterator<Inverse<T> > scc_begin(const Inverse<T> &G) {
return scc_iterator<Inverse<T> >::begin(G);
}
template <class T>
scc_iterator<Inverse<T> > scc_end(const Inverse<T> &G) {
return scc_iterator<Inverse<T> >::end(G);
}
} // End llvm namespace
#endif

View File

@@ -0,0 +1,312 @@
//===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains some templates that are useful if you are working with the
// STL at all.
//
// No library is required when using these functions.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_STLEXTRAS_H
#define LLVM_ADT_STLEXTRAS_H
#include <cstddef> // for std::size_t
#include <cstdlib> // for qsort
#include <functional>
#include <iterator>
#include <utility> // for std::pair
namespace llvm {
//===----------------------------------------------------------------------===//
// Extra additions to <functional>
//===----------------------------------------------------------------------===//
template<class Ty>
struct identity : public std::unary_function<Ty, Ty> {
Ty &operator()(Ty &self) const {
return self;
}
const Ty &operator()(const Ty &self) const {
return self;
}
};
template<class Ty>
struct less_ptr : public std::binary_function<Ty, Ty, bool> {
bool operator()(const Ty* left, const Ty* right) const {
return *left < *right;
}
};
template<class Ty>
struct greater_ptr : public std::binary_function<Ty, Ty, bool> {
bool operator()(const Ty* left, const Ty* right) const {
return *right < *left;
}
};
// deleter - Very very very simple method that is used to invoke operator
// delete on something. It is used like this:
//
// for_each(V.begin(), B.end(), deleter<Interval>);
//
template <class T>
inline void deleter(T *Ptr) {
delete Ptr;
}
//===----------------------------------------------------------------------===//
// Extra additions to <iterator>
//===----------------------------------------------------------------------===//
// mapped_iterator - This is a simple iterator adapter that causes a function to
// be dereferenced whenever operator* is invoked on the iterator.
//
template <class RootIt, class UnaryFunc>
class mapped_iterator {
RootIt current;
UnaryFunc Fn;
public:
typedef typename std::iterator_traits<RootIt>::iterator_category
iterator_category;
typedef typename std::iterator_traits<RootIt>::difference_type
difference_type;
typedef typename UnaryFunc::result_type value_type;
typedef void pointer;
//typedef typename UnaryFunc::result_type *pointer;
typedef void reference; // Can't modify value returned by fn
typedef RootIt iterator_type;
typedef mapped_iterator<RootIt, UnaryFunc> _Self;
inline const RootIt &getCurrent() const { return current; }
inline const UnaryFunc &getFunc() const { return Fn; }
inline explicit mapped_iterator(const RootIt &I, UnaryFunc F)
: current(I), Fn(F) {}
inline mapped_iterator(const mapped_iterator &It)
: current(It.current), Fn(It.Fn) {}
inline value_type operator*() const { // All this work to do this
return Fn(*current); // little change
}
_Self& operator++() { ++current; return *this; }
_Self& operator--() { --current; return *this; }
_Self operator++(int) { _Self __tmp = *this; ++current; return __tmp; }
_Self operator--(int) { _Self __tmp = *this; --current; return __tmp; }
_Self operator+ (difference_type n) const {
return _Self(current + n, Fn);
}
_Self& operator+= (difference_type n) { current += n; return *this; }
_Self operator- (difference_type n) const {
return _Self(current - n, Fn);
}
_Self& operator-= (difference_type n) { current -= n; return *this; }
reference operator[](difference_type n) const { return *(*this + n); }
inline bool operator!=(const _Self &X) const { return !operator==(X); }
inline bool operator==(const _Self &X) const { return current == X.current; }
inline bool operator< (const _Self &X) const { return current < X.current; }
inline difference_type operator-(const _Self &X) const {
return current - X.current;
}
};
template <class _Iterator, class Func>
inline mapped_iterator<_Iterator, Func>
operator+(typename mapped_iterator<_Iterator, Func>::difference_type N,
const mapped_iterator<_Iterator, Func>& X) {
return mapped_iterator<_Iterator, Func>(X.getCurrent() - N, X.getFunc());
}
// map_iterator - Provide a convenient way to create mapped_iterators, just like
// make_pair is useful for creating pairs...
//
template <class ItTy, class FuncTy>
inline mapped_iterator<ItTy, FuncTy> map_iterator(const ItTy &I, FuncTy F) {
return mapped_iterator<ItTy, FuncTy>(I, F);
}
// next/prior - These functions unlike std::advance do not modify the
// passed iterator but return a copy.
//
// next(myIt) returns copy of myIt incremented once
// next(myIt, n) returns copy of myIt incremented n times
// prior(myIt) returns copy of myIt decremented once
// prior(myIt, n) returns copy of myIt decremented n times
template <typename ItTy, typename Dist>
inline ItTy next(ItTy it, Dist n)
{
std::advance(it, n);
return it;
}
template <typename ItTy>
inline ItTy next(ItTy it)
{
return ++it;
}
template <typename ItTy, typename Dist>
inline ItTy prior(ItTy it, Dist n)
{
std::advance(it, -n);
return it;
}
template <typename ItTy>
inline ItTy prior(ItTy it)
{
return --it;
}
//===----------------------------------------------------------------------===//
// Extra additions to <utility>
//===----------------------------------------------------------------------===//
// tie - this function ties two objects and returns a temporary object
// that is assignable from a std::pair. This can be used to make code
// more readable when using values returned from functions bundled in
// a std::pair. Since an example is worth 1000 words:
//
// typedef std::map<int, int> Int2IntMap;
//
// Int2IntMap myMap;
// Int2IntMap::iterator where;
// bool inserted;
// tie(where, inserted) = myMap.insert(std::make_pair(123,456));
//
// if (inserted)
// // do stuff
// else
// // do other stuff
template <typename T1, typename T2>
struct tier {
typedef T1 &first_type;
typedef T2 &second_type;
first_type first;
second_type second;
tier(first_type f, second_type s) : first(f), second(s) { }
tier& operator=(const std::pair<T1, T2>& p) {
first = p.first;
second = p.second;
return *this;
}
};
template <typename T1, typename T2>
inline tier<T1, T2> tie(T1& f, T2& s) {
return tier<T1, T2>(f, s);
}
//===----------------------------------------------------------------------===//
// Extra additions for arrays
//===----------------------------------------------------------------------===//
/// Find where an array ends (for ending iterators)
/// This returns a pointer to the byte immediately
/// after the end of an array.
template<class T, std::size_t N>
inline T *array_endof(T (&x)[N]) {
return x+N;
}
/// Find the length of an array.
template<class T, std::size_t N>
inline size_t array_lengthof(T (&)[N]) {
return N;
}
/// array_pod_sort_comparator - This is helper function for array_pod_sort,
/// which just uses operator< on T.
template<typename T>
inline int array_pod_sort_comparator(const void *P1, const void *P2) {
if (*reinterpret_cast<const T*>(P1) < *reinterpret_cast<const T*>(P2))
return -1;
if (*reinterpret_cast<const T*>(P2) < *reinterpret_cast<const T*>(P1))
return 1;
return 0;
}
/// get_array_pod_sort_comparator - This is an internal helper function used to
/// get type deduction of T right.
template<typename T>
inline int (*get_array_pod_sort_comparator(const T &))
(const void*, const void*) {
return array_pod_sort_comparator<T>;
}
/// array_pod_sort - This sorts an array with the specified start and end
/// extent. This is just like std::sort, except that it calls qsort instead of
/// using an inlined template. qsort is slightly slower than std::sort, but
/// most sorts are not performance critical in LLVM and std::sort has to be
/// template instantiated for each type, leading to significant measured code
/// bloat. This function should generally be used instead of std::sort where
/// possible.
///
/// This function assumes that you have simple POD-like types that can be
/// compared with operator< and can be moved with memcpy. If this isn't true,
/// you should use std::sort.
///
/// NOTE: If qsort_r were portable, we could allow a custom comparator and
/// default to std::less.
template<class IteratorTy>
inline void array_pod_sort(IteratorTy Start, IteratorTy End) {
// Don't dereference start iterator of empty sequence.
if (Start == End) return;
qsort(&*Start, End-Start, sizeof(*Start),
get_array_pod_sort_comparator(*Start));
}
template<class IteratorTy>
inline void array_pod_sort(IteratorTy Start, IteratorTy End,
int (*Compare)(const void*, const void*)) {
// Don't dereference start iterator of empty sequence.
if (Start == End) return;
qsort(&*Start, End-Start, sizeof(*Start), Compare);
}
//===----------------------------------------------------------------------===//
// Extra additions to <algorithm>
//===----------------------------------------------------------------------===//
/// For a container of pointers, deletes the pointers and then clears the
/// container.
template<typename Container>
void DeleteContainerPointers(Container &C) {
for (typename Container::iterator I = C.begin(), E = C.end(); I != E; ++I)
delete *I;
C.clear();
}
/// In a container of pairs (usually a map) whose second element is a pointer,
/// deletes the second elements and then clears the container.
template<typename Container>
void DeleteContainerSeconds(Container &C) {
for (typename Container::iterator I = C.begin(), E = C.end(); I != E; ++I)
delete I->second;
C.clear();
}
} // End llvm namespace
#endif

View File

@@ -0,0 +1,256 @@
//===- ScopedHashTable.h - A simple scoped hash table ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements an efficient scoped hash table, which is useful for
// things like dominator-based optimizations. This allows clients to do things
// like this:
//
// ScopedHashTable<int, int> HT;
// {
// ScopedHashTableScope<int, int> Scope1(HT);
// HT.insert(0, 0);
// HT.insert(1, 1);
// {
// ScopedHashTableScope<int, int> Scope2(HT);
// HT.insert(0, 42);
// }
// }
//
// Looking up the value for "0" in the Scope2 block will return 42. Looking
// up the value for 0 before 42 is inserted or after Scope2 is popped will
// return 0.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_SCOPEDHASHTABLE_H
#define LLVM_ADT_SCOPEDHASHTABLE_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/Support/Allocator.h"
namespace llvm {
template <typename K, typename V, typename KInfo = DenseMapInfo<K>,
typename AllocatorTy = MallocAllocator>
class ScopedHashTable;
template <typename K, typename V>
class ScopedHashTableVal {
ScopedHashTableVal *NextInScope;
ScopedHashTableVal *NextForKey;
K Key;
V Val;
ScopedHashTableVal(const K &key, const V &val) : Key(key), Val(val) {}
public:
const K &getKey() const { return Key; }
const V &getValue() const { return Val; }
V &getValue() { return Val; }
ScopedHashTableVal *getNextForKey() { return NextForKey; }
const ScopedHashTableVal *getNextForKey() const { return NextForKey; }
ScopedHashTableVal *getNextInScope() { return NextInScope; }
template <typename AllocatorTy>
static ScopedHashTableVal *Create(ScopedHashTableVal *nextInScope,
ScopedHashTableVal *nextForKey,
const K &key, const V &val,
AllocatorTy &Allocator) {
ScopedHashTableVal *New = Allocator.template Allocate<ScopedHashTableVal>();
// Set up the value.
new (New) ScopedHashTableVal(key, val);
New->NextInScope = nextInScope;
New->NextForKey = nextForKey;
return New;
}
template <typename AllocatorTy>
void Destroy(AllocatorTy &Allocator) {
// Free memory referenced by the item.
this->~ScopedHashTableVal();
Allocator.Deallocate(this);
}
};
template <typename K, typename V, typename KInfo = DenseMapInfo<K>,
typename AllocatorTy = MallocAllocator>
class ScopedHashTableScope {
/// HT - The hashtable that we are active for.
ScopedHashTable<K, V, KInfo, AllocatorTy> &HT;
/// PrevScope - This is the scope that we are shadowing in HT.
ScopedHashTableScope *PrevScope;
/// LastValInScope - This is the last value that was inserted for this scope
/// or null if none have been inserted yet.
ScopedHashTableVal<K, V> *LastValInScope;
void operator=(ScopedHashTableScope&) LLVM_DELETED_FUNCTION;
ScopedHashTableScope(ScopedHashTableScope&) LLVM_DELETED_FUNCTION;
public:
ScopedHashTableScope(ScopedHashTable<K, V, KInfo, AllocatorTy> &HT);
~ScopedHashTableScope();
ScopedHashTableScope *getParentScope() { return PrevScope; }
const ScopedHashTableScope *getParentScope() const { return PrevScope; }
private:
friend class ScopedHashTable<K, V, KInfo, AllocatorTy>;
ScopedHashTableVal<K, V> *getLastValInScope() {
return LastValInScope;
}
void setLastValInScope(ScopedHashTableVal<K, V> *Val) {
LastValInScope = Val;
}
};
template <typename K, typename V, typename KInfo = DenseMapInfo<K> >
class ScopedHashTableIterator {
ScopedHashTableVal<K, V> *Node;
public:
ScopedHashTableIterator(ScopedHashTableVal<K, V> *node) : Node(node) {}
V &operator*() const {
assert(Node && "Dereference end()");
return Node->getValue();
}
V *operator->() const {
return &Node->getValue();
}
bool operator==(const ScopedHashTableIterator &RHS) const {
return Node == RHS.Node;
}
bool operator!=(const ScopedHashTableIterator &RHS) const {
return Node != RHS.Node;
}
inline ScopedHashTableIterator& operator++() { // Preincrement
assert(Node && "incrementing past end()");
Node = Node->getNextForKey();
return *this;
}
ScopedHashTableIterator operator++(int) { // Postincrement
ScopedHashTableIterator tmp = *this; ++*this; return tmp;
}
};
template <typename K, typename V, typename KInfo, typename AllocatorTy>
class ScopedHashTable {
public:
/// ScopeTy - This is a helpful typedef that allows clients to get easy access
/// to the name of the scope for this hash table.
typedef ScopedHashTableScope<K, V, KInfo, AllocatorTy> ScopeTy;
private:
typedef ScopedHashTableVal<K, V> ValTy;
DenseMap<K, ValTy*, KInfo> TopLevelMap;
ScopeTy *CurScope;
AllocatorTy Allocator;
ScopedHashTable(const ScopedHashTable&); // NOT YET IMPLEMENTED
void operator=(const ScopedHashTable&); // NOT YET IMPLEMENTED
friend class ScopedHashTableScope<K, V, KInfo, AllocatorTy>;
public:
ScopedHashTable() : CurScope(0) {}
ScopedHashTable(AllocatorTy A) : CurScope(0), Allocator(A) {}
~ScopedHashTable() {
assert(CurScope == 0 && TopLevelMap.empty() && "Scope imbalance!");
}
/// Access to the allocator.
typedef typename ReferenceAdder<AllocatorTy>::result AllocatorRefTy;
typedef typename ReferenceAdder<const AllocatorTy>::result AllocatorCRefTy;
AllocatorRefTy getAllocator() { return Allocator; }
AllocatorCRefTy getAllocator() const { return Allocator; }
bool count(const K &Key) const {
return TopLevelMap.count(Key);
}
V lookup(const K &Key) {
typename DenseMap<K, ValTy*, KInfo>::iterator I = TopLevelMap.find(Key);
if (I != TopLevelMap.end())
return I->second->getValue();
return V();
}
void insert(const K &Key, const V &Val) {
insertIntoScope(CurScope, Key, Val);
}
typedef ScopedHashTableIterator<K, V, KInfo> iterator;
iterator end() { return iterator(0); }
iterator begin(const K &Key) {
typename DenseMap<K, ValTy*, KInfo>::iterator I =
TopLevelMap.find(Key);
if (I == TopLevelMap.end()) return end();
return iterator(I->second);
}
ScopeTy *getCurScope() { return CurScope; }
const ScopeTy *getCurScope() const { return CurScope; }
/// insertIntoScope - This inserts the specified key/value at the specified
/// (possibly not the current) scope. While it is ok to insert into a scope
/// that isn't the current one, it isn't ok to insert *underneath* an existing
/// value of the specified key.
void insertIntoScope(ScopeTy *S, const K &Key, const V &Val) {
assert(S && "No scope active!");
ScopedHashTableVal<K, V> *&KeyEntry = TopLevelMap[Key];
KeyEntry = ValTy::Create(S->getLastValInScope(), KeyEntry, Key, Val,
Allocator);
S->setLastValInScope(KeyEntry);
}
};
/// ScopedHashTableScope ctor - Install this as the current scope for the hash
/// table.
template <typename K, typename V, typename KInfo, typename Allocator>
ScopedHashTableScope<K, V, KInfo, Allocator>::
ScopedHashTableScope(ScopedHashTable<K, V, KInfo, Allocator> &ht) : HT(ht) {
PrevScope = HT.CurScope;
HT.CurScope = this;
LastValInScope = 0;
}
template <typename K, typename V, typename KInfo, typename Allocator>
ScopedHashTableScope<K, V, KInfo, Allocator>::~ScopedHashTableScope() {
assert(HT.CurScope == this && "Scope imbalance!");
HT.CurScope = PrevScope;
// Pop and delete all values corresponding to this scope.
while (ScopedHashTableVal<K, V> *ThisEntry = LastValInScope) {
// Pop this value out of the TopLevelMap.
if (ThisEntry->getNextForKey() == 0) {
assert(HT.TopLevelMap[ThisEntry->getKey()] == ThisEntry &&
"Scope imbalance!");
HT.TopLevelMap.erase(ThisEntry->getKey());
} else {
ScopedHashTableVal<K, V> *&KeyEntry = HT.TopLevelMap[ThisEntry->getKey()];
assert(KeyEntry == ThisEntry && "Scope imbalance!");
KeyEntry = ThisEntry->getNextForKey();
}
// Pop this value out of the scope.
LastValInScope = ThisEntry->getNextInScope();
// Delete this entry.
ThisEntry->Destroy(HT.getAllocator());
}
}
} // end namespace llvm
#endif

View File

@@ -0,0 +1,71 @@
//===-- llvm/ADT/SetOperations.h - Generic Set Operations -------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines generic set operations that may be used on set's of
// different types, and different element types.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_SETOPERATIONS_H
#define LLVM_ADT_SETOPERATIONS_H
namespace llvm {
/// set_union(A, B) - Compute A := A u B, return whether A changed.
///
template <class S1Ty, class S2Ty>
bool set_union(S1Ty &S1, const S2Ty &S2) {
bool Changed = false;
for (typename S2Ty::const_iterator SI = S2.begin(), SE = S2.end();
SI != SE; ++SI)
if (S1.insert(*SI).second)
Changed = true;
return Changed;
}
/// set_intersect(A, B) - Compute A := A ^ B
/// Identical to set_intersection, except that it works on set<>'s and
/// is nicer to use. Functionally, this iterates through S1, removing
/// elements that are not contained in S2.
///
template <class S1Ty, class S2Ty>
void set_intersect(S1Ty &S1, const S2Ty &S2) {
for (typename S1Ty::iterator I = S1.begin(); I != S1.end();) {
const typename S1Ty::key_type &E = *I;
++I;
if (!S2.count(E)) S1.erase(E); // Erase element if not in S2
}
}
/// set_difference(A, B) - Return A - B
///
template <class S1Ty, class S2Ty>
S1Ty set_difference(const S1Ty &S1, const S2Ty &S2) {
S1Ty Result;
for (typename S1Ty::const_iterator SI = S1.begin(), SE = S1.end();
SI != SE; ++SI)
if (!S2.count(*SI)) // if the element is not in set2
Result.insert(*SI);
return Result;
}
/// set_subtract(A, B) - Compute A := A - B
///
template <class S1Ty, class S2Ty>
void set_subtract(S1Ty &S1, const S2Ty &S2) {
for (typename S2Ty::const_iterator SI = S2.begin(), SE = S2.end();
SI != SE; ++SI)
S1.erase(*SI);
}
} // End llvm namespace
#endif

View File

@@ -0,0 +1,232 @@
//===- llvm/ADT/SetVector.h - Set with insert order iteration ---*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a set that has insertion order iteration
// characteristics. This is useful for keeping a set of things that need to be
// visited later but in a deterministic order (insertion order). The interface
// is purposefully minimal.
//
// This file defines SetVector and SmallSetVector, which performs no allocations
// if the SetVector has less than a certain number of elements.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_SETVECTOR_H
#define LLVM_ADT_SETVECTOR_H
#include "llvm/ADT/SmallSet.h"
#include <algorithm>
#include <cassert>
#include <vector>
namespace llvm {
/// \brief A vector that has set insertion semantics.
///
/// This adapter class provides a way to keep a set of things that also has the
/// property of a deterministic iteration order. The order of iteration is the
/// order of insertion.
template <typename T, typename Vector = std::vector<T>,
typename Set = SmallSet<T, 16> >
class SetVector {
public:
typedef T value_type;
typedef T key_type;
typedef T& reference;
typedef const T& const_reference;
typedef Set set_type;
typedef Vector vector_type;
typedef typename vector_type::const_iterator iterator;
typedef typename vector_type::const_iterator const_iterator;
typedef typename vector_type::size_type size_type;
/// \brief Construct an empty SetVector
SetVector() {}
/// \brief Initialize a SetVector with a range of elements
template<typename It>
SetVector(It Start, It End) {
insert(Start, End);
}
/// \brief Determine if the SetVector is empty or not.
bool empty() const {
return vector_.empty();
}
/// \brief Determine the number of elements in the SetVector.
size_type size() const {
return vector_.size();
}
/// \brief Get an iterator to the beginning of the SetVector.
iterator begin() {
return vector_.begin();
}
/// \brief Get a const_iterator to the beginning of the SetVector.
const_iterator begin() const {
return vector_.begin();
}
/// \brief Get an iterator to the end of the SetVector.
iterator end() {
return vector_.end();
}
/// \brief Get a const_iterator to the end of the SetVector.
const_iterator end() const {
return vector_.end();
}
/// \brief Return the last element of the SetVector.
const T &back() const {
assert(!empty() && "Cannot call back() on empty SetVector!");
return vector_.back();
}
/// \brief Index into the SetVector.
const_reference operator[](size_type n) const {
assert(n < vector_.size() && "SetVector access out of range!");
return vector_[n];
}
/// \brief Insert a new element into the SetVector.
/// \returns true iff the element was inserted into the SetVector.
bool insert(const value_type &X) {
bool result = set_.insert(X);
if (result)
vector_.push_back(X);
return result;
}
/// \brief Insert a range of elements into the SetVector.
template<typename It>
void insert(It Start, It End) {
for (; Start != End; ++Start)
if (set_.insert(*Start))
vector_.push_back(*Start);
}
/// \brief Remove an item from the set vector.
bool remove(const value_type& X) {
if (set_.erase(X)) {
typename vector_type::iterator I =
std::find(vector_.begin(), vector_.end(), X);
assert(I != vector_.end() && "Corrupted SetVector instances!");
vector_.erase(I);
return true;
}
return false;
}
/// \brief Remove items from the set vector based on a predicate function.
///
/// This is intended to be equivalent to the following code, if we could
/// write it:
///
/// \code
/// V.erase(std::remove_if(V.begin(), V.end(), P), V.end());
/// \endcode
///
/// However, SetVector doesn't expose non-const iterators, making any
/// algorithm like remove_if impossible to use.
///
/// \returns true if any element is removed.
template <typename UnaryPredicate>
bool remove_if(UnaryPredicate P) {
typename vector_type::iterator I
= std::remove_if(vector_.begin(), vector_.end(),
TestAndEraseFromSet<UnaryPredicate>(P, set_));
if (I == vector_.end())
return false;
vector_.erase(I, vector_.end());
return true;
}
/// \brief Count the number of elements of a given key in the SetVector.
/// \returns 0 if the element is not in the SetVector, 1 if it is.
size_type count(const key_type &key) const {
return set_.count(key);
}
/// \brief Completely clear the SetVector
void clear() {
set_.clear();
vector_.clear();
}
/// \brief Remove the last element of the SetVector.
void pop_back() {
assert(!empty() && "Cannot remove an element from an empty SetVector!");
set_.erase(back());
vector_.pop_back();
}
T pop_back_val() {
T Ret = back();
pop_back();
return Ret;
}
bool operator==(const SetVector &that) const {
return vector_ == that.vector_;
}
bool operator!=(const SetVector &that) const {
return vector_ != that.vector_;
}
private:
/// \brief A wrapper predicate designed for use with std::remove_if.
///
/// This predicate wraps a predicate suitable for use with std::remove_if to
/// call set_.erase(x) on each element which is slated for removal.
template <typename UnaryPredicate>
class TestAndEraseFromSet {
UnaryPredicate P;
set_type &set_;
public:
typedef typename UnaryPredicate::argument_type argument_type;
TestAndEraseFromSet(UnaryPredicate P, set_type &set_) : P(P), set_(set_) {}
bool operator()(argument_type Arg) {
if (P(Arg)) {
set_.erase(Arg);
return true;
}
return false;
}
};
set_type set_; ///< The set.
vector_type vector_; ///< The vector.
};
/// \brief A SetVector that performs no allocations if smaller than
/// a certain size.
template <typename T, unsigned N>
class SmallSetVector : public SetVector<T, SmallVector<T, N>, SmallSet<T, N> > {
public:
SmallSetVector() {}
/// \brief Initialize a SmallSetVector with a range of elements
template<typename It>
SmallSetVector(It Start, It End) {
this->insert(Start, End);
}
};
} // End llvm namespace
// vim: sw=2 ai
#endif

View File

@@ -0,0 +1,574 @@
//===- llvm/ADT/SmallBitVector.h - 'Normally small' bit vectors -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the SmallBitVector class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_SMALLBITVECTOR_H
#define LLVM_ADT_SMALLBITVECTOR_H
#include "llvm/ADT/BitVector.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/MathExtras.h"
#include <cassert>
namespace llvm {
/// SmallBitVector - This is a 'bitvector' (really, a variable-sized bit array),
/// optimized for the case when the array is small. It contains one
/// pointer-sized field, which is directly used as a plain collection of bits
/// when possible, or as a pointer to a larger heap-allocated array when
/// necessary. This allows normal "small" cases to be fast without losing
/// generality for large inputs.
///
class SmallBitVector {
// TODO: In "large" mode, a pointer to a BitVector is used, leading to an
// unnecessary level of indirection. It would be more efficient to use a
// pointer to memory containing size, allocation size, and the array of bits.
uintptr_t X;
enum {
// The number of bits in this class.
NumBaseBits = sizeof(uintptr_t) * CHAR_BIT,
// One bit is used to discriminate between small and large mode. The
// remaining bits are used for the small-mode representation.
SmallNumRawBits = NumBaseBits - 1,
// A few more bits are used to store the size of the bit set in small mode.
// Theoretically this is a ceil-log2. These bits are encoded in the most
// significant bits of the raw bits.
SmallNumSizeBits = (NumBaseBits == 32 ? 5 :
NumBaseBits == 64 ? 6 :
SmallNumRawBits),
// The remaining bits are used to store the actual set in small mode.
SmallNumDataBits = SmallNumRawBits - SmallNumSizeBits
};
public:
// Encapsulation of a single bit.
class reference {
SmallBitVector &TheVector;
unsigned BitPos;
public:
reference(SmallBitVector &b, unsigned Idx) : TheVector(b), BitPos(Idx) {}
reference& operator=(reference t) {
*this = bool(t);
return *this;
}
reference& operator=(bool t) {
if (t)
TheVector.set(BitPos);
else
TheVector.reset(BitPos);
return *this;
}
operator bool() const {
return const_cast<const SmallBitVector &>(TheVector).operator[](BitPos);
}
};
private:
bool isSmall() const {
return X & uintptr_t(1);
}
BitVector *getPointer() const {
assert(!isSmall());
return reinterpret_cast<BitVector *>(X);
}
void switchToSmall(uintptr_t NewSmallBits, size_t NewSize) {
X = 1;
setSmallSize(NewSize);
setSmallBits(NewSmallBits);
}
void switchToLarge(BitVector *BV) {
X = reinterpret_cast<uintptr_t>(BV);
assert(!isSmall() && "Tried to use an unaligned pointer");
}
// Return all the bits used for the "small" representation; this includes
// bits for the size as well as the element bits.
uintptr_t getSmallRawBits() const {
assert(isSmall());
return X >> 1;
}
void setSmallRawBits(uintptr_t NewRawBits) {
assert(isSmall());
X = (NewRawBits << 1) | uintptr_t(1);
}
// Return the size.
size_t getSmallSize() const {
return getSmallRawBits() >> SmallNumDataBits;
}
void setSmallSize(size_t Size) {
setSmallRawBits(getSmallBits() | (Size << SmallNumDataBits));
}
// Return the element bits.
uintptr_t getSmallBits() const {
return getSmallRawBits() & ~(~uintptr_t(0) << getSmallSize());
}
void setSmallBits(uintptr_t NewBits) {
setSmallRawBits((NewBits & ~(~uintptr_t(0) << getSmallSize())) |
(getSmallSize() << SmallNumDataBits));
}
public:
/// SmallBitVector default ctor - Creates an empty bitvector.
SmallBitVector() : X(1) {}
/// SmallBitVector ctor - Creates a bitvector of specified number of bits. All
/// bits are initialized to the specified value.
explicit SmallBitVector(unsigned s, bool t = false) {
if (s <= SmallNumDataBits)
switchToSmall(t ? ~uintptr_t(0) : 0, s);
else
switchToLarge(new BitVector(s, t));
}
/// SmallBitVector copy ctor.
SmallBitVector(const SmallBitVector &RHS) {
if (RHS.isSmall())
X = RHS.X;
else
switchToLarge(new BitVector(*RHS.getPointer()));
}
#if LLVM_HAS_RVALUE_REFERENCES
SmallBitVector(SmallBitVector &&RHS) : X(RHS.X) {
RHS.X = 1;
}
#endif
~SmallBitVector() {
if (!isSmall())
delete getPointer();
}
/// empty - Tests whether there are no bits in this bitvector.
bool empty() const {
return isSmall() ? getSmallSize() == 0 : getPointer()->empty();
}
/// size - Returns the number of bits in this bitvector.
size_t size() const {
return isSmall() ? getSmallSize() : getPointer()->size();
}
/// count - Returns the number of bits which are set.
unsigned count() const {
if (isSmall()) {
uintptr_t Bits = getSmallBits();
if (NumBaseBits == 32)
return CountPopulation_32(Bits);
if (NumBaseBits == 64)
return CountPopulation_64(Bits);
llvm_unreachable("Unsupported!");
}
return getPointer()->count();
}
/// any - Returns true if any bit is set.
bool any() const {
if (isSmall())
return getSmallBits() != 0;
return getPointer()->any();
}
/// all - Returns true if all bits are set.
bool all() const {
if (isSmall())
return getSmallBits() == (uintptr_t(1) << getSmallSize()) - 1;
return getPointer()->all();
}
/// none - Returns true if none of the bits are set.
bool none() const {
if (isSmall())
return getSmallBits() == 0;
return getPointer()->none();
}
/// find_first - Returns the index of the first set bit, -1 if none
/// of the bits are set.
int find_first() const {
if (isSmall()) {
uintptr_t Bits = getSmallBits();
if (Bits == 0)
return -1;
if (NumBaseBits == 32)
return CountTrailingZeros_32(Bits);
if (NumBaseBits == 64)
return CountTrailingZeros_64(Bits);
llvm_unreachable("Unsupported!");
}
return getPointer()->find_first();
}
/// find_next - Returns the index of the next set bit following the
/// "Prev" bit. Returns -1 if the next set bit is not found.
int find_next(unsigned Prev) const {
if (isSmall()) {
uintptr_t Bits = getSmallBits();
// Mask off previous bits.
Bits &= ~uintptr_t(0) << (Prev + 1);
if (Bits == 0 || Prev + 1 >= getSmallSize())
return -1;
if (NumBaseBits == 32)
return CountTrailingZeros_32(Bits);
if (NumBaseBits == 64)
return CountTrailingZeros_64(Bits);
llvm_unreachable("Unsupported!");
}
return getPointer()->find_next(Prev);
}
/// clear - Clear all bits.
void clear() {
if (!isSmall())
delete getPointer();
switchToSmall(0, 0);
}
/// resize - Grow or shrink the bitvector.
void resize(unsigned N, bool t = false) {
if (!isSmall()) {
getPointer()->resize(N, t);
} else if (SmallNumDataBits >= N) {
uintptr_t NewBits = t ? ~uintptr_t(0) << getSmallSize() : 0;
setSmallSize(N);
setSmallBits(NewBits | getSmallBits());
} else {
BitVector *BV = new BitVector(N, t);
uintptr_t OldBits = getSmallBits();
for (size_t i = 0, e = getSmallSize(); i != e; ++i)
(*BV)[i] = (OldBits >> i) & 1;
switchToLarge(BV);
}
}
void reserve(unsigned N) {
if (isSmall()) {
if (N > SmallNumDataBits) {
uintptr_t OldBits = getSmallRawBits();
size_t SmallSize = getSmallSize();
BitVector *BV = new BitVector(SmallSize);
for (size_t i = 0; i < SmallSize; ++i)
if ((OldBits >> i) & 1)
BV->set(i);
BV->reserve(N);
switchToLarge(BV);
}
} else {
getPointer()->reserve(N);
}
}
// Set, reset, flip
SmallBitVector &set() {
if (isSmall())
setSmallBits(~uintptr_t(0));
else
getPointer()->set();
return *this;
}
SmallBitVector &set(unsigned Idx) {
if (isSmall())
setSmallBits(getSmallBits() | (uintptr_t(1) << Idx));
else
getPointer()->set(Idx);
return *this;
}
/// set - Efficiently set a range of bits in [I, E)
SmallBitVector &set(unsigned I, unsigned E) {
assert(I <= E && "Attempted to set backwards range!");
assert(E <= size() && "Attempted to set out-of-bounds range!");
if (I == E) return *this;
if (isSmall()) {
uintptr_t EMask = ((uintptr_t)1) << E;
uintptr_t IMask = ((uintptr_t)1) << I;
uintptr_t Mask = EMask - IMask;
setSmallBits(getSmallBits() | Mask);
} else
getPointer()->set(I, E);
return *this;
}
SmallBitVector &reset() {
if (isSmall())
setSmallBits(0);
else
getPointer()->reset();
return *this;
}
SmallBitVector &reset(unsigned Idx) {
if (isSmall())
setSmallBits(getSmallBits() & ~(uintptr_t(1) << Idx));
else
getPointer()->reset(Idx);
return *this;
}
/// reset - Efficiently reset a range of bits in [I, E)
SmallBitVector &reset(unsigned I, unsigned E) {
assert(I <= E && "Attempted to reset backwards range!");
assert(E <= size() && "Attempted to reset out-of-bounds range!");
if (I == E) return *this;
if (isSmall()) {
uintptr_t EMask = ((uintptr_t)1) << E;
uintptr_t IMask = ((uintptr_t)1) << I;
uintptr_t Mask = EMask - IMask;
setSmallBits(getSmallBits() & ~Mask);
} else
getPointer()->reset(I, E);
return *this;
}
SmallBitVector &flip() {
if (isSmall())
setSmallBits(~getSmallBits());
else
getPointer()->flip();
return *this;
}
SmallBitVector &flip(unsigned Idx) {
if (isSmall())
setSmallBits(getSmallBits() ^ (uintptr_t(1) << Idx));
else
getPointer()->flip(Idx);
return *this;
}
// No argument flip.
SmallBitVector operator~() const {
return SmallBitVector(*this).flip();
}
// Indexing.
reference operator[](unsigned Idx) {
assert(Idx < size() && "Out-of-bounds Bit access.");
return reference(*this, Idx);
}
bool operator[](unsigned Idx) const {
assert(Idx < size() && "Out-of-bounds Bit access.");
if (isSmall())
return ((getSmallBits() >> Idx) & 1) != 0;
return getPointer()->operator[](Idx);
}
bool test(unsigned Idx) const {
return (*this)[Idx];
}
/// Test if any common bits are set.
bool anyCommon(const SmallBitVector &RHS) const {
if (isSmall() && RHS.isSmall())
return (getSmallBits() & RHS.getSmallBits()) != 0;
if (!isSmall() && !RHS.isSmall())
return getPointer()->anyCommon(*RHS.getPointer());
for (unsigned i = 0, e = std::min(size(), RHS.size()); i != e; ++i)
if (test(i) && RHS.test(i))
return true;
return false;
}
// Comparison operators.
bool operator==(const SmallBitVector &RHS) const {
if (size() != RHS.size())
return false;
if (isSmall())
return getSmallBits() == RHS.getSmallBits();
else
return *getPointer() == *RHS.getPointer();
}
bool operator!=(const SmallBitVector &RHS) const {
return !(*this == RHS);
}
// Intersection, union, disjoint union.
SmallBitVector &operator&=(const SmallBitVector &RHS) {
resize(std::max(size(), RHS.size()));
if (isSmall())
setSmallBits(getSmallBits() & RHS.getSmallBits());
else if (!RHS.isSmall())
getPointer()->operator&=(*RHS.getPointer());
else {
SmallBitVector Copy = RHS;
Copy.resize(size());
getPointer()->operator&=(*Copy.getPointer());
}
return *this;
}
SmallBitVector &operator|=(const SmallBitVector &RHS) {
resize(std::max(size(), RHS.size()));
if (isSmall())
setSmallBits(getSmallBits() | RHS.getSmallBits());
else if (!RHS.isSmall())
getPointer()->operator|=(*RHS.getPointer());
else {
SmallBitVector Copy = RHS;
Copy.resize(size());
getPointer()->operator|=(*Copy.getPointer());
}
return *this;
}
SmallBitVector &operator^=(const SmallBitVector &RHS) {
resize(std::max(size(), RHS.size()));
if (isSmall())
setSmallBits(getSmallBits() ^ RHS.getSmallBits());
else if (!RHS.isSmall())
getPointer()->operator^=(*RHS.getPointer());
else {
SmallBitVector Copy = RHS;
Copy.resize(size());
getPointer()->operator^=(*Copy.getPointer());
}
return *this;
}
// Assignment operator.
const SmallBitVector &operator=(const SmallBitVector &RHS) {
if (isSmall()) {
if (RHS.isSmall())
X = RHS.X;
else
switchToLarge(new BitVector(*RHS.getPointer()));
} else {
if (!RHS.isSmall())
*getPointer() = *RHS.getPointer();
else {
delete getPointer();
X = RHS.X;
}
}
return *this;
}
#if LLVM_HAS_RVALUE_REFERENCES
const SmallBitVector &operator=(SmallBitVector &&RHS) {
if (this != &RHS) {
clear();
swap(RHS);
}
return *this;
}
#endif
void swap(SmallBitVector &RHS) {
std::swap(X, RHS.X);
}
/// setBitsInMask - Add '1' bits from Mask to this vector. Don't resize.
/// This computes "*this |= Mask".
void setBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
if (isSmall())
applyMask<true, false>(Mask, MaskWords);
else
getPointer()->setBitsInMask(Mask, MaskWords);
}
/// clearBitsInMask - Clear any bits in this vector that are set in Mask.
/// Don't resize. This computes "*this &= ~Mask".
void clearBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
if (isSmall())
applyMask<false, false>(Mask, MaskWords);
else
getPointer()->clearBitsInMask(Mask, MaskWords);
}
/// setBitsNotInMask - Add a bit to this vector for every '0' bit in Mask.
/// Don't resize. This computes "*this |= ~Mask".
void setBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
if (isSmall())
applyMask<true, true>(Mask, MaskWords);
else
getPointer()->setBitsNotInMask(Mask, MaskWords);
}
/// clearBitsNotInMask - Clear a bit in this vector for every '0' bit in Mask.
/// Don't resize. This computes "*this &= Mask".
void clearBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
if (isSmall())
applyMask<false, true>(Mask, MaskWords);
else
getPointer()->clearBitsNotInMask(Mask, MaskWords);
}
private:
template<bool AddBits, bool InvertMask>
void applyMask(const uint32_t *Mask, unsigned MaskWords) {
assert((NumBaseBits == 64 || NumBaseBits == 32) && "Unsupported word size");
if (NumBaseBits == 64 && MaskWords >= 2) {
uint64_t M = Mask[0] | (uint64_t(Mask[1]) << 32);
if (InvertMask) M = ~M;
if (AddBits) setSmallBits(getSmallBits() | M);
else setSmallBits(getSmallBits() & ~M);
} else {
uint32_t M = Mask[0];
if (InvertMask) M = ~M;
if (AddBits) setSmallBits(getSmallBits() | M);
else setSmallBits(getSmallBits() & ~M);
}
}
};
inline SmallBitVector
operator&(const SmallBitVector &LHS, const SmallBitVector &RHS) {
SmallBitVector Result(LHS);
Result &= RHS;
return Result;
}
inline SmallBitVector
operator|(const SmallBitVector &LHS, const SmallBitVector &RHS) {
SmallBitVector Result(LHS);
Result |= RHS;
return Result;
}
inline SmallBitVector
operator^(const SmallBitVector &LHS, const SmallBitVector &RHS) {
SmallBitVector Result(LHS);
Result ^= RHS;
return Result;
}
} // End llvm namespace
namespace std {
/// Implement std::swap in terms of BitVector swap.
inline void
swap(llvm::SmallBitVector &LHS, llvm::SmallBitVector &RHS) {
LHS.swap(RHS);
}
}
#endif

View File

@@ -0,0 +1,307 @@
//===- llvm/ADT/SmallPtrSet.h - 'Normally small' pointer set ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the SmallPtrSet class. See the doxygen comment for
// SmallPtrSetImpl for more details on the algorithm used.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_SMALLPTRSET_H
#define LLVM_ADT_SMALLPTRSET_H
#include "llvm/Support/Compiler.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/Support/PointerLikeTypeTraits.h"
#include <cassert>
#include <cstddef>
#include <cstring>
#include <iterator>
namespace llvm {
class SmallPtrSetIteratorImpl;
/// SmallPtrSetImpl - This is the common code shared among all the
/// SmallPtrSet<>'s, which is almost everything. SmallPtrSet has two modes, one
/// for small and one for large sets.
///
/// Small sets use an array of pointers allocated in the SmallPtrSet object,
/// which is treated as a simple array of pointers. When a pointer is added to
/// the set, the array is scanned to see if the element already exists, if not
/// the element is 'pushed back' onto the array. If we run out of space in the
/// array, we grow into the 'large set' case. SmallSet should be used when the
/// sets are often small. In this case, no memory allocation is used, and only
/// light-weight and cache-efficient scanning is used.
///
/// Large sets use a classic exponentially-probed hash table. Empty buckets are
/// represented with an illegal pointer value (-1) to allow null pointers to be
/// inserted. Tombstones are represented with another illegal pointer value
/// (-2), to allow deletion. The hash table is resized when the table is 3/4 or
/// more. When this happens, the table is doubled in size.
///
class SmallPtrSetImpl {
friend class SmallPtrSetIteratorImpl;
protected:
/// SmallArray - Points to a fixed size set of buckets, used in 'small mode'.
const void **SmallArray;
/// CurArray - This is the current set of buckets. If equal to SmallArray,
/// then the set is in 'small mode'.
const void **CurArray;
/// CurArraySize - The allocated size of CurArray, always a power of two.
unsigned CurArraySize;
// If small, this is # elts allocated consecutively
unsigned NumElements;
unsigned NumTombstones;
// Helper to copy construct a SmallPtrSet.
SmallPtrSetImpl(const void **SmallStorage, const SmallPtrSetImpl& that);
explicit SmallPtrSetImpl(const void **SmallStorage, unsigned SmallSize) :
SmallArray(SmallStorage), CurArray(SmallStorage), CurArraySize(SmallSize) {
assert(SmallSize && (SmallSize & (SmallSize-1)) == 0 &&
"Initial size must be a power of two!");
clear();
}
~SmallPtrSetImpl();
public:
bool empty() const { return size() == 0; }
unsigned size() const { return NumElements; }
void clear() {
// If the capacity of the array is huge, and the # elements used is small,
// shrink the array.
if (!isSmall() && NumElements*4 < CurArraySize && CurArraySize > 32)
return shrink_and_clear();
// Fill the array with empty markers.
memset(CurArray, -1, CurArraySize*sizeof(void*));
NumElements = 0;
NumTombstones = 0;
}
protected:
static void *getTombstoneMarker() { return reinterpret_cast<void*>(-2); }
static void *getEmptyMarker() {
// Note that -1 is chosen to make clear() efficiently implementable with
// memset and because it's not a valid pointer value.
return reinterpret_cast<void*>(-1);
}
/// insert_imp - This returns true if the pointer was new to the set, false if
/// it was already in the set. This is hidden from the client so that the
/// derived class can check that the right type of pointer is passed in.
bool insert_imp(const void * Ptr);
/// erase_imp - If the set contains the specified pointer, remove it and
/// return true, otherwise return false. This is hidden from the client so
/// that the derived class can check that the right type of pointer is passed
/// in.
bool erase_imp(const void * Ptr);
bool count_imp(const void * Ptr) const {
if (isSmall()) {
// Linear search for the item.
for (const void *const *APtr = SmallArray,
*const *E = SmallArray+NumElements; APtr != E; ++APtr)
if (*APtr == Ptr)
return true;
return false;
}
// Big set case.
return *FindBucketFor(Ptr) == Ptr;
}
private:
bool isSmall() const { return CurArray == SmallArray; }
const void * const *FindBucketFor(const void *Ptr) const;
void shrink_and_clear();
/// Grow - Allocate a larger backing store for the buckets and move it over.
void Grow(unsigned NewSize);
void operator=(const SmallPtrSetImpl &RHS) LLVM_DELETED_FUNCTION;
protected:
/// swap - Swaps the elements of two sets.
/// Note: This method assumes that both sets have the same small size.
void swap(SmallPtrSetImpl &RHS);
void CopyFrom(const SmallPtrSetImpl &RHS);
};
/// SmallPtrSetIteratorImpl - This is the common base class shared between all
/// instances of SmallPtrSetIterator.
class SmallPtrSetIteratorImpl {
protected:
const void *const *Bucket;
const void *const *End;
public:
explicit SmallPtrSetIteratorImpl(const void *const *BP, const void*const *E)
: Bucket(BP), End(E) {
AdvanceIfNotValid();
}
bool operator==(const SmallPtrSetIteratorImpl &RHS) const {
return Bucket == RHS.Bucket;
}
bool operator!=(const SmallPtrSetIteratorImpl &RHS) const {
return Bucket != RHS.Bucket;
}
protected:
/// AdvanceIfNotValid - If the current bucket isn't valid, advance to a bucket
/// that is. This is guaranteed to stop because the end() bucket is marked
/// valid.
void AdvanceIfNotValid() {
assert(Bucket <= End);
while (Bucket != End &&
(*Bucket == SmallPtrSetImpl::getEmptyMarker() ||
*Bucket == SmallPtrSetImpl::getTombstoneMarker()))
++Bucket;
}
};
/// SmallPtrSetIterator - This implements a const_iterator for SmallPtrSet.
template<typename PtrTy>
class SmallPtrSetIterator : public SmallPtrSetIteratorImpl {
typedef PointerLikeTypeTraits<PtrTy> PtrTraits;
public:
typedef PtrTy value_type;
typedef PtrTy reference;
typedef PtrTy pointer;
typedef std::ptrdiff_t difference_type;
typedef std::forward_iterator_tag iterator_category;
explicit SmallPtrSetIterator(const void *const *BP, const void *const *E)
: SmallPtrSetIteratorImpl(BP, E) {}
// Most methods provided by baseclass.
const PtrTy operator*() const {
assert(Bucket < End);
return PtrTraits::getFromVoidPointer(const_cast<void*>(*Bucket));
}
inline SmallPtrSetIterator& operator++() { // Preincrement
++Bucket;
AdvanceIfNotValid();
return *this;
}
SmallPtrSetIterator operator++(int) { // Postincrement
SmallPtrSetIterator tmp = *this; ++*this; return tmp;
}
};
/// RoundUpToPowerOfTwo - This is a helper template that rounds N up to the next
/// power of two (which means N itself if N is already a power of two).
template<unsigned N>
struct RoundUpToPowerOfTwo;
/// RoundUpToPowerOfTwoH - If N is not a power of two, increase it. This is a
/// helper template used to implement RoundUpToPowerOfTwo.
template<unsigned N, bool isPowerTwo>
struct RoundUpToPowerOfTwoH {
enum { Val = N };
};
template<unsigned N>
struct RoundUpToPowerOfTwoH<N, false> {
enum {
// We could just use NextVal = N+1, but this converges faster. N|(N-1) sets
// the right-most zero bits to one all at once, e.g. 0b0011000 -> 0b0011111.
Val = RoundUpToPowerOfTwo<(N|(N-1)) + 1>::Val
};
};
template<unsigned N>
struct RoundUpToPowerOfTwo {
enum { Val = RoundUpToPowerOfTwoH<N, (N&(N-1)) == 0>::Val };
};
/// SmallPtrSet - This class implements a set which is optimized for holding
/// SmallSize or less elements. This internally rounds up SmallSize to the next
/// power of two if it is not already a power of two. See the comments above
/// SmallPtrSetImpl for details of the algorithm.
template<class PtrType, unsigned SmallSize>
class SmallPtrSet : public SmallPtrSetImpl {
// Make sure that SmallSize is a power of two, round up if not.
enum { SmallSizePowTwo = RoundUpToPowerOfTwo<SmallSize>::Val };
/// SmallStorage - Fixed size storage used in 'small mode'.
const void *SmallStorage[SmallSizePowTwo];
typedef PointerLikeTypeTraits<PtrType> PtrTraits;
public:
SmallPtrSet() : SmallPtrSetImpl(SmallStorage, SmallSizePowTwo) {}
SmallPtrSet(const SmallPtrSet &that) : SmallPtrSetImpl(SmallStorage, that) {}
template<typename It>
SmallPtrSet(It I, It E) : SmallPtrSetImpl(SmallStorage, SmallSizePowTwo) {
insert(I, E);
}
/// insert - This returns true if the pointer was new to the set, false if it
/// was already in the set.
bool insert(PtrType Ptr) {
return insert_imp(PtrTraits::getAsVoidPointer(Ptr));
}
/// erase - If the set contains the specified pointer, remove it and return
/// true, otherwise return false.
bool erase(PtrType Ptr) {
return erase_imp(PtrTraits::getAsVoidPointer(Ptr));
}
/// count - Return true if the specified pointer is in the set.
bool count(PtrType Ptr) const {
return count_imp(PtrTraits::getAsVoidPointer(Ptr));
}
template <typename IterT>
void insert(IterT I, IterT E) {
for (; I != E; ++I)
insert(*I);
}
typedef SmallPtrSetIterator<PtrType> iterator;
typedef SmallPtrSetIterator<PtrType> const_iterator;
inline iterator begin() const {
return iterator(CurArray, CurArray+CurArraySize);
}
inline iterator end() const {
return iterator(CurArray+CurArraySize, CurArray+CurArraySize);
}
// Allow assignment from any smallptrset with the same element type even if it
// doesn't have the same smallsize.
const SmallPtrSet<PtrType, SmallSize>&
operator=(const SmallPtrSet<PtrType, SmallSize> &RHS) {
CopyFrom(RHS);
return *this;
}
/// swap - Swaps the elements of two sets.
void swap(SmallPtrSet<PtrType, SmallSize> &RHS) {
SmallPtrSetImpl::swap(RHS);
}
};
}
namespace std {
/// Implement std::swap in terms of SmallPtrSet swap.
template<class T, unsigned N>
inline void swap(llvm::SmallPtrSet<T, N> &LHS, llvm::SmallPtrSet<T, N> &RHS) {
LHS.swap(RHS);
}
}
#endif

View File

@@ -0,0 +1,119 @@
//===- llvm/ADT/SmallSet.h - 'Normally small' sets --------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the SmallSet class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_SMALLSET_H
#define LLVM_ADT_SMALLSET_H
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include <set>
namespace llvm {
/// SmallSet - This maintains a set of unique values, optimizing for the case
/// when the set is small (less than N). In this case, the set can be
/// maintained with no mallocs. If the set gets large, we expand to using an
/// std::set to maintain reasonable lookup times.
///
/// Note that this set does not provide a way to iterate over members in the
/// set.
template <typename T, unsigned N, typename C = std::less<T> >
class SmallSet {
/// Use a SmallVector to hold the elements here (even though it will never
/// reach its 'large' stage) to avoid calling the default ctors of elements
/// we will never use.
SmallVector<T, N> Vector;
std::set<T, C> Set;
typedef typename SmallVector<T, N>::const_iterator VIterator;
typedef typename SmallVector<T, N>::iterator mutable_iterator;
public:
SmallSet() {}
bool empty() const { return Vector.empty() && Set.empty(); }
unsigned size() const {
return isSmall() ? Vector.size() : Set.size();
}
/// count - Return true if the element is in the set.
bool count(const T &V) const {
if (isSmall()) {
// Since the collection is small, just do a linear search.
return vfind(V) != Vector.end();
} else {
return Set.count(V);
}
}
/// insert - Insert an element into the set if it isn't already there.
/// Returns true if the element is inserted (it was not in the set before).
bool insert(const T &V) {
if (!isSmall())
return Set.insert(V).second;
VIterator I = vfind(V);
if (I != Vector.end()) // Don't reinsert if it already exists.
return false;
if (Vector.size() < N) {
Vector.push_back(V);
return true;
}
// Otherwise, grow from vector to set.
while (!Vector.empty()) {
Set.insert(Vector.back());
Vector.pop_back();
}
Set.insert(V);
return true;
}
template <typename IterT>
void insert(IterT I, IterT E) {
for (; I != E; ++I)
insert(*I);
}
bool erase(const T &V) {
if (!isSmall())
return Set.erase(V);
for (mutable_iterator I = Vector.begin(), E = Vector.end(); I != E; ++I)
if (*I == V) {
Vector.erase(I);
return true;
}
return false;
}
void clear() {
Vector.clear();
Set.clear();
}
private:
bool isSmall() const { return Set.empty(); }
VIterator vfind(const T &V) const {
for (VIterator I = Vector.begin(), E = Vector.end(); I != E; ++I)
if (*I == V)
return I;
return Vector.end();
}
};
/// If this set is of pointer values, transparently switch over to using
/// SmallPtrSet for performance.
template <typename PointeeType, unsigned N>
class SmallSet<PointeeType*, N> : public SmallPtrSet<PointeeType*, N> {};
} // end namespace llvm
#endif

View File

@@ -0,0 +1,300 @@
//===- llvm/ADT/SmallString.h - 'Normally small' strings --------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the SmallString class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_SMALLSTRING_H
#define LLVM_ADT_SMALLSTRING_H
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
namespace llvm {
/// SmallString - A SmallString is just a SmallVector with methods and accessors
/// that make it work better as a string (e.g. operator+ etc).
template<unsigned InternalLen>
class SmallString : public SmallVector<char, InternalLen> {
public:
/// Default ctor - Initialize to empty.
SmallString() {}
/// Initialize from a StringRef.
SmallString(StringRef S) : SmallVector<char, InternalLen>(S.begin(), S.end()) {}
/// Initialize with a range.
template<typename ItTy>
SmallString(ItTy S, ItTy E) : SmallVector<char, InternalLen>(S, E) {}
/// Copy ctor.
SmallString(const SmallString &RHS) : SmallVector<char, InternalLen>(RHS) {}
// Note that in order to add new overloads for append & assign, we have to
// duplicate the inherited versions so as not to inadvertently hide them.
/// @}
/// @name String Assignment
/// @{
/// Assign from a repeated element.
void assign(size_t NumElts, char Elt) {
this->SmallVectorImpl<char>::assign(NumElts, Elt);
}
/// Assign from an iterator pair.
template<typename in_iter>
void assign(in_iter S, in_iter E) {
this->clear();
SmallVectorImpl<char>::append(S, E);
}
/// Assign from a StringRef.
void assign(StringRef RHS) {
this->clear();
SmallVectorImpl<char>::append(RHS.begin(), RHS.end());
}
/// Assign from a SmallVector.
void assign(const SmallVectorImpl<char> &RHS) {
this->clear();
SmallVectorImpl<char>::append(RHS.begin(), RHS.end());
}
/// @}
/// @name String Concatenation
/// @{
/// Append from an iterator pair.
template<typename in_iter>
void append(in_iter S, in_iter E) {
SmallVectorImpl<char>::append(S, E);
}
void append(size_t NumInputs, char Elt) {
SmallVectorImpl<char>::append(NumInputs, Elt);
}
/// Append from a StringRef.
void append(StringRef RHS) {
SmallVectorImpl<char>::append(RHS.begin(), RHS.end());
}
/// Append from a SmallVector.
void append(const SmallVectorImpl<char> &RHS) {
SmallVectorImpl<char>::append(RHS.begin(), RHS.end());
}
/// @}
/// @name String Comparison
/// @{
/// Check for string equality. This is more efficient than compare() when
/// the relative ordering of inequal strings isn't needed.
bool equals(StringRef RHS) const {
return str().equals(RHS);
}
/// Check for string equality, ignoring case.
bool equals_lower(StringRef RHS) const {
return str().equals_lower(RHS);
}
/// Compare two strings; the result is -1, 0, or 1 if this string is
/// lexicographically less than, equal to, or greater than the \p RHS.
int compare(StringRef RHS) const {
return str().compare(RHS);
}
/// compare_lower - Compare two strings, ignoring case.
int compare_lower(StringRef RHS) const {
return str().compare_lower(RHS);
}
/// compare_numeric - Compare two strings, treating sequences of digits as
/// numbers.
int compare_numeric(StringRef RHS) const {
return str().compare_numeric(RHS);
}
/// @}
/// @name String Predicates
/// @{
/// startswith - Check if this string starts with the given \p Prefix.
bool startswith(StringRef Prefix) const {
return str().startswith(Prefix);
}
/// endswith - Check if this string ends with the given \p Suffix.
bool endswith(StringRef Suffix) const {
return str().endswith(Suffix);
}
/// @}
/// @name String Searching
/// @{
/// find - Search for the first character \p C in the string.
///
/// \return - The index of the first occurrence of \p C, or npos if not
/// found.
size_t find(char C, size_t From = 0) const {
return str().find(C, From);
}
/// Search for the first string \p Str in the string.
///
/// \returns The index of the first occurrence of \p Str, or npos if not
/// found.
size_t find(StringRef Str, size_t From = 0) const {
return str().find(Str, From);
}
/// Search for the last character \p C in the string.
///
/// \returns The index of the last occurrence of \p C, or npos if not
/// found.
size_t rfind(char C, size_t From = StringRef::npos) const {
return str().rfind(C, From);
}
/// Search for the last string \p Str in the string.
///
/// \returns The index of the last occurrence of \p Str, or npos if not
/// found.
size_t rfind(StringRef Str) const {
return str().rfind(Str);
}
/// Find the first character in the string that is \p C, or npos if not
/// found. Same as find.
size_t find_first_of(char C, size_t From = 0) const {
return str().find_first_of(C, From);
}
/// Find the first character in the string that is in \p Chars, or npos if
/// not found.
///
/// Complexity: O(size() + Chars.size())
size_t find_first_of(StringRef Chars, size_t From = 0) const {
return str().find_first_of(Chars, From);
}
/// Find the first character in the string that is not \p C or npos if not
/// found.
size_t find_first_not_of(char C, size_t From = 0) const {
return str().find_first_not_of(C, From);
}
/// Find the first character in the string that is not in the string
/// \p Chars, or npos if not found.
///
/// Complexity: O(size() + Chars.size())
size_t find_first_not_of(StringRef Chars, size_t From = 0) const {
return str().find_first_not_of(Chars, From);
}
/// Find the last character in the string that is \p C, or npos if not
/// found.
size_t find_last_of(char C, size_t From = StringRef::npos) const {
return str().find_last_of(C, From);
}
/// Find the last character in the string that is in \p C, or npos if not
/// found.
///
/// Complexity: O(size() + Chars.size())
size_t find_last_of(
StringRef Chars, size_t From = StringRef::npos) const {
return str().find_last_of(Chars, From);
}
/// @}
/// @name Helpful Algorithms
/// @{
/// Return the number of occurrences of \p C in the string.
size_t count(char C) const {
return str().count(C);
}
/// Return the number of non-overlapped occurrences of \p Str in the
/// string.
size_t count(StringRef Str) const {
return str().count(Str);
}
/// @}
/// @name Substring Operations
/// @{
/// Return a reference to the substring from [Start, Start + N).
///
/// \param Start The index of the starting character in the substring; if
/// the index is npos or greater than the length of the string then the
/// empty substring will be returned.
///
/// \param N The number of characters to included in the substring. If \p N
/// exceeds the number of characters remaining in the string, the string
/// suffix (starting with \p Start) will be returned.
StringRef substr(size_t Start, size_t N = StringRef::npos) const {
return str().substr(Start, N);
}
/// Return a reference to the substring from [Start, End).
///
/// \param Start The index of the starting character in the substring; if
/// the index is npos or greater than the length of the string then the
/// empty substring will be returned.
///
/// \param End The index following the last character to include in the
/// substring. If this is npos, or less than \p Start, or exceeds the
/// number of characters remaining in the string, the string suffix
/// (starting with \p Start) will be returned.
StringRef slice(size_t Start, size_t End) const {
return str().slice(Start, End);
}
// Extra methods.
/// Explicit conversion to StringRef.
StringRef str() const { return StringRef(this->begin(), this->size()); }
// TODO: Make this const, if it's safe...
const char* c_str() {
this->push_back(0);
this->pop_back();
return this->data();
}
/// Implicit conversion to StringRef.
operator StringRef() const { return str(); }
// Extra operators.
const SmallString &operator=(StringRef RHS) {
this->clear();
return *this += RHS;
}
SmallString &operator+=(StringRef RHS) {
this->append(RHS.begin(), RHS.end());
return *this;
}
SmallString &operator+=(char C) {
this->push_back(C);
return *this;
}
};
}
#endif

View File

@@ -0,0 +1,944 @@
//===- llvm/ADT/SmallVector.h - 'Normally small' vectors --------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the SmallVector class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_SMALLVECTOR_H
#define LLVM_ADT_SMALLVECTOR_H
#include "llvm/Support/AlignOf.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/type_traits.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdlib>
#include <cstring>
#include <iterator>
#include <memory>
namespace llvm {
/// SmallVectorBase - This is all the non-templated stuff common to all
/// SmallVectors.
class SmallVectorBase {
protected:
void *BeginX, *EndX, *CapacityX;
protected:
SmallVectorBase(void *FirstEl, size_t Size)
: BeginX(FirstEl), EndX(FirstEl), CapacityX((char*)FirstEl+Size) {}
/// grow_pod - This is an implementation of the grow() method which only works
/// on POD-like data types and is out of line to reduce code duplication.
void grow_pod(void *FirstEl, size_t MinSizeInBytes, size_t TSize);
public:
/// size_in_bytes - This returns size()*sizeof(T).
size_t size_in_bytes() const {
return size_t((char*)EndX - (char*)BeginX);
}
/// capacity_in_bytes - This returns capacity()*sizeof(T).
size_t capacity_in_bytes() const {
return size_t((char*)CapacityX - (char*)BeginX);
}
bool empty() const { return BeginX == EndX; }
};
template <typename T, unsigned N> struct SmallVectorStorage;
/// SmallVectorTemplateCommon - This is the part of SmallVectorTemplateBase
/// which does not depend on whether the type T is a POD. The extra dummy
/// template argument is used by ArrayRef to avoid unnecessarily requiring T
/// to be complete.
template <typename T, typename = void>
class SmallVectorTemplateCommon : public SmallVectorBase {
private:
template <typename, unsigned> friend struct SmallVectorStorage;
// Allocate raw space for N elements of type T. If T has a ctor or dtor, we
// don't want it to be automatically run, so we need to represent the space as
// something else. Use an array of char of sufficient alignment.
typedef llvm::AlignedCharArrayUnion<T> U;
U FirstEl;
// Space after 'FirstEl' is clobbered, do not add any instance vars after it.
protected:
SmallVectorTemplateCommon(size_t Size) : SmallVectorBase(&FirstEl, Size) {}
void grow_pod(size_t MinSizeInBytes, size_t TSize) {
SmallVectorBase::grow_pod(&FirstEl, MinSizeInBytes, TSize);
}
/// isSmall - Return true if this is a smallvector which has not had dynamic
/// memory allocated for it.
bool isSmall() const {
return BeginX == static_cast<const void*>(&FirstEl);
}
/// resetToSmall - Put this vector in a state of being small.
void resetToSmall() {
BeginX = EndX = CapacityX = &FirstEl;
}
void setEnd(T *P) { this->EndX = P; }
public:
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef T value_type;
typedef T *iterator;
typedef const T *const_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef T &reference;
typedef const T &const_reference;
typedef T *pointer;
typedef const T *const_pointer;
// forward iterator creation methods.
iterator begin() { return (iterator)this->BeginX; }
const_iterator begin() const { return (const_iterator)this->BeginX; }
iterator end() { return (iterator)this->EndX; }
const_iterator end() const { return (const_iterator)this->EndX; }
protected:
iterator capacity_ptr() { return (iterator)this->CapacityX; }
const_iterator capacity_ptr() const { return (const_iterator)this->CapacityX;}
public:
// reverse iterator creation methods.
reverse_iterator rbegin() { return reverse_iterator(end()); }
const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); }
reverse_iterator rend() { return reverse_iterator(begin()); }
const_reverse_iterator rend() const { return const_reverse_iterator(begin());}
size_type size() const { return end()-begin(); }
size_type max_size() const { return size_type(-1) / sizeof(T); }
/// capacity - Return the total number of elements in the currently allocated
/// buffer.
size_t capacity() const { return capacity_ptr() - begin(); }
/// data - Return a pointer to the vector's buffer, even if empty().
pointer data() { return pointer(begin()); }
/// data - Return a pointer to the vector's buffer, even if empty().
const_pointer data() const { return const_pointer(begin()); }
reference operator[](unsigned idx) {
assert(begin() + idx < end());
return begin()[idx];
}
const_reference operator[](unsigned idx) const {
assert(begin() + idx < end());
return begin()[idx];
}
reference front() {
assert(!empty());
return begin()[0];
}
const_reference front() const {
assert(!empty());
return begin()[0];
}
reference back() {
assert(!empty());
return end()[-1];
}
const_reference back() const {
assert(!empty());
return end()[-1];
}
};
/// SmallVectorTemplateBase<isPodLike = false> - This is where we put method
/// implementations that are designed to work with non-POD-like T's.
template <typename T, bool isPodLike>
class SmallVectorTemplateBase : public SmallVectorTemplateCommon<T> {
protected:
SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
static void destroy_range(T *S, T *E) {
while (S != E) {
--E;
E->~T();
}
}
/// move - Use move-assignment to move the range [I, E) onto the
/// objects starting with "Dest". This is just <memory>'s
/// std::move, but not all stdlibs actually provide that.
template<typename It1, typename It2>
static It2 move(It1 I, It1 E, It2 Dest) {
#if LLVM_HAS_RVALUE_REFERENCES
for (; I != E; ++I, ++Dest)
*Dest = ::std::move(*I);
return Dest;
#else
return ::std::copy(I, E, Dest);
#endif
}
/// move_backward - Use move-assignment to move the range
/// [I, E) onto the objects ending at "Dest", moving objects
/// in reverse order. This is just <algorithm>'s
/// std::move_backward, but not all stdlibs actually provide that.
template<typename It1, typename It2>
static It2 move_backward(It1 I, It1 E, It2 Dest) {
#if LLVM_HAS_RVALUE_REFERENCES
while (I != E)
*--Dest = ::std::move(*--E);
return Dest;
#else
return ::std::copy_backward(I, E, Dest);
#endif
}
/// uninitialized_move - Move the range [I, E) into the uninitialized
/// memory starting with "Dest", constructing elements as needed.
template<typename It1, typename It2>
static void uninitialized_move(It1 I, It1 E, It2 Dest) {
#if LLVM_HAS_RVALUE_REFERENCES
for (; I != E; ++I, ++Dest)
::new ((void*) &*Dest) T(::std::move(*I));
#else
::std::uninitialized_copy(I, E, Dest);
#endif
}
/// uninitialized_copy - Copy the range [I, E) onto the uninitialized
/// memory starting with "Dest", constructing elements as needed.
template<typename It1, typename It2>
static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
std::uninitialized_copy(I, E, Dest);
}
/// grow - Grow the allocated memory (without initializing new
/// elements), doubling the size of the allocated memory.
/// Guarantees space for at least one more element, or MinSize more
/// elements if specified.
void grow(size_t MinSize = 0);
public:
void push_back(const T &Elt) {
if (this->EndX < this->CapacityX) {
Retry:
::new ((void*) this->end()) T(Elt);
this->setEnd(this->end()+1);
return;
}
this->grow();
goto Retry;
}
#if LLVM_HAS_RVALUE_REFERENCES
void push_back(T &&Elt) {
if (this->EndX < this->CapacityX) {
Retry:
::new ((void*) this->end()) T(::std::move(Elt));
this->setEnd(this->end()+1);
return;
}
this->grow();
goto Retry;
}
#endif
void pop_back() {
this->setEnd(this->end()-1);
this->end()->~T();
}
};
// Define this out-of-line to dissuade the C++ compiler from inlining it.
template <typename T, bool isPodLike>
void SmallVectorTemplateBase<T, isPodLike>::grow(size_t MinSize) {
size_t CurCapacity = this->capacity();
size_t CurSize = this->size();
// Always grow, even from zero.
size_t NewCapacity = size_t(NextPowerOf2(CurCapacity+2));
if (NewCapacity < MinSize)
NewCapacity = MinSize;
T *NewElts = static_cast<T*>(malloc(NewCapacity*sizeof(T)));
// Move the elements over.
this->uninitialized_move(this->begin(), this->end(), NewElts);
// Destroy the original elements.
destroy_range(this->begin(), this->end());
// If this wasn't grown from the inline copy, deallocate the old space.
if (!this->isSmall())
free(this->begin());
this->setEnd(NewElts+CurSize);
this->BeginX = NewElts;
this->CapacityX = this->begin()+NewCapacity;
}
/// SmallVectorTemplateBase<isPodLike = true> - This is where we put method
/// implementations that are designed to work with POD-like T's.
template <typename T>
class SmallVectorTemplateBase<T, true> : public SmallVectorTemplateCommon<T> {
protected:
SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
// No need to do a destroy loop for POD's.
static void destroy_range(T *, T *) {}
/// move - Use move-assignment to move the range [I, E) onto the
/// objects starting with "Dest". For PODs, this is just memcpy.
template<typename It1, typename It2>
static It2 move(It1 I, It1 E, It2 Dest) {
return ::std::copy(I, E, Dest);
}
/// move_backward - Use move-assignment to move the range
/// [I, E) onto the objects ending at "Dest", moving objects
/// in reverse order.
template<typename It1, typename It2>
static It2 move_backward(It1 I, It1 E, It2 Dest) {
return ::std::copy_backward(I, E, Dest);
}
/// uninitialized_move - Move the range [I, E) onto the uninitialized memory
/// starting with "Dest", constructing elements into it as needed.
template<typename It1, typename It2>
static void uninitialized_move(It1 I, It1 E, It2 Dest) {
// Just do a copy.
uninitialized_copy(I, E, Dest);
}
/// uninitialized_copy - Copy the range [I, E) onto the uninitialized memory
/// starting with "Dest", constructing elements into it as needed.
template<typename It1, typename It2>
static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
// Arbitrary iterator types; just use the basic implementation.
std::uninitialized_copy(I, E, Dest);
}
/// uninitialized_copy - Copy the range [I, E) onto the uninitialized memory
/// starting with "Dest", constructing elements into it as needed.
template<typename T1, typename T2>
static void uninitialized_copy(T1 *I, T1 *E, T2 *Dest) {
// Use memcpy for PODs iterated by pointers (which includes SmallVector
// iterators): std::uninitialized_copy optimizes to memmove, but we can
// use memcpy here.
memcpy(Dest, I, (E-I)*sizeof(T));
}
/// grow - double the size of the allocated memory, guaranteeing space for at
/// least one more element or MinSize if specified.
void grow(size_t MinSize = 0) {
this->grow_pod(MinSize*sizeof(T), sizeof(T));
}
public:
void push_back(const T &Elt) {
if (this->EndX < this->CapacityX) {
Retry:
memcpy(this->end(), &Elt, sizeof(T));
this->setEnd(this->end()+1);
return;
}
this->grow();
goto Retry;
}
void pop_back() {
this->setEnd(this->end()-1);
}
};
/// SmallVectorImpl - This class consists of common code factored out of the
/// SmallVector class to reduce code duplication based on the SmallVector 'N'
/// template parameter.
template <typename T>
class SmallVectorImpl : public SmallVectorTemplateBase<T, isPodLike<T>::value> {
typedef SmallVectorTemplateBase<T, isPodLike<T>::value > SuperClass;
SmallVectorImpl(const SmallVectorImpl&) LLVM_DELETED_FUNCTION;
public:
typedef typename SuperClass::iterator iterator;
typedef typename SuperClass::size_type size_type;
protected:
// Default ctor - Initialize to empty.
explicit SmallVectorImpl(unsigned N)
: SmallVectorTemplateBase<T, isPodLike<T>::value>(N*sizeof(T)) {
}
public:
~SmallVectorImpl() {
// Destroy the constructed elements in the vector.
this->destroy_range(this->begin(), this->end());
// If this wasn't grown from the inline copy, deallocate the old space.
if (!this->isSmall())
free(this->begin());
}
void clear() {
this->destroy_range(this->begin(), this->end());
this->EndX = this->BeginX;
}
void resize(unsigned N) {
if (N < this->size()) {
this->destroy_range(this->begin()+N, this->end());
this->setEnd(this->begin()+N);
} else if (N > this->size()) {
if (this->capacity() < N)
this->grow(N);
std::uninitialized_fill(this->end(), this->begin()+N, T());
this->setEnd(this->begin()+N);
}
}
void resize(unsigned N, const T &NV) {
if (N < this->size()) {
this->destroy_range(this->begin()+N, this->end());
this->setEnd(this->begin()+N);
} else if (N > this->size()) {
if (this->capacity() < N)
this->grow(N);
std::uninitialized_fill(this->end(), this->begin()+N, NV);
this->setEnd(this->begin()+N);
}
}
void reserve(unsigned N) {
if (this->capacity() < N)
this->grow(N);
}
T pop_back_val() {
#if LLVM_HAS_RVALUE_REFERENCES
T Result = ::std::move(this->back());
#else
T Result = this->back();
#endif
this->pop_back();
return Result;
}
void swap(SmallVectorImpl &RHS);
/// append - Add the specified range to the end of the SmallVector.
///
template<typename in_iter>
void append(in_iter in_start, in_iter in_end) {
size_type NumInputs = std::distance(in_start, in_end);
// Grow allocated space if needed.
if (NumInputs > size_type(this->capacity_ptr()-this->end()))
this->grow(this->size()+NumInputs);
// Copy the new elements over.
// TODO: NEED To compile time dispatch on whether in_iter is a random access
// iterator to use the fast uninitialized_copy.
std::uninitialized_copy(in_start, in_end, this->end());
this->setEnd(this->end() + NumInputs);
}
/// append - Add the specified range to the end of the SmallVector.
///
void append(size_type NumInputs, const T &Elt) {
// Grow allocated space if needed.
if (NumInputs > size_type(this->capacity_ptr()-this->end()))
this->grow(this->size()+NumInputs);
// Copy the new elements over.
std::uninitialized_fill_n(this->end(), NumInputs, Elt);
this->setEnd(this->end() + NumInputs);
}
void assign(unsigned NumElts, const T &Elt) {
clear();
if (this->capacity() < NumElts)
this->grow(NumElts);
this->setEnd(this->begin()+NumElts);
std::uninitialized_fill(this->begin(), this->end(), Elt);
}
iterator erase(iterator I) {
assert(I >= this->begin() && "Iterator to erase is out of bounds.");
assert(I < this->end() && "Erasing at past-the-end iterator.");
iterator N = I;
// Shift all elts down one.
this->move(I+1, this->end(), I);
// Drop the last elt.
this->pop_back();
return(N);
}
iterator erase(iterator S, iterator E) {
assert(S >= this->begin() && "Range to erase is out of bounds.");
assert(S <= E && "Trying to erase invalid range.");
assert(E <= this->end() && "Trying to erase past the end.");
iterator N = S;
// Shift all elts down.
iterator I = this->move(E, this->end(), S);
// Drop the last elts.
this->destroy_range(I, this->end());
this->setEnd(I);
return(N);
}
#if LLVM_HAS_RVALUE_REFERENCES
iterator insert(iterator I, T &&Elt) {
if (I == this->end()) { // Important special case for empty vector.
this->push_back(::std::move(Elt));
return this->end()-1;
}
assert(I >= this->begin() && "Insertion iterator is out of bounds.");
assert(I <= this->end() && "Inserting past the end of the vector.");
if (this->EndX < this->CapacityX) {
Retry:
::new ((void*) this->end()) T(::std::move(this->back()));
this->setEnd(this->end()+1);
// Push everything else over.
this->move_backward(I, this->end()-1, this->end());
// If we just moved the element we're inserting, be sure to update
// the reference.
T *EltPtr = &Elt;
if (I <= EltPtr && EltPtr < this->EndX)
++EltPtr;
*I = ::std::move(*EltPtr);
return I;
}
size_t EltNo = I-this->begin();
this->grow();
I = this->begin()+EltNo;
goto Retry;
}
#endif
iterator insert(iterator I, const T &Elt) {
if (I == this->end()) { // Important special case for empty vector.
this->push_back(Elt);
return this->end()-1;
}
assert(I >= this->begin() && "Insertion iterator is out of bounds.");
assert(I <= this->end() && "Inserting past the end of the vector.");
if (this->EndX < this->CapacityX) {
Retry:
::new ((void*) this->end()) T(this->back());
this->setEnd(this->end()+1);
// Push everything else over.
this->move_backward(I, this->end()-1, this->end());
// If we just moved the element we're inserting, be sure to update
// the reference.
const T *EltPtr = &Elt;
if (I <= EltPtr && EltPtr < this->EndX)
++EltPtr;
*I = *EltPtr;
return I;
}
size_t EltNo = I-this->begin();
this->grow();
I = this->begin()+EltNo;
goto Retry;
}
iterator insert(iterator I, size_type NumToInsert, const T &Elt) {
// Convert iterator to elt# to avoid invalidating iterator when we reserve()
size_t InsertElt = I - this->begin();
if (I == this->end()) { // Important special case for empty vector.
append(NumToInsert, Elt);
return this->begin()+InsertElt;
}
assert(I >= this->begin() && "Insertion iterator is out of bounds.");
assert(I <= this->end() && "Inserting past the end of the vector.");
// Ensure there is enough space.
reserve(static_cast<unsigned>(this->size() + NumToInsert));
// Uninvalidate the iterator.
I = this->begin()+InsertElt;
// If there are more elements between the insertion point and the end of the
// range than there are being inserted, we can use a simple approach to
// insertion. Since we already reserved space, we know that this won't
// reallocate the vector.
if (size_t(this->end()-I) >= NumToInsert) {
T *OldEnd = this->end();
append(this->end()-NumToInsert, this->end());
// Copy the existing elements that get replaced.
this->move_backward(I, OldEnd-NumToInsert, OldEnd);
std::fill_n(I, NumToInsert, Elt);
return I;
}
// Otherwise, we're inserting more elements than exist already, and we're
// not inserting at the end.
// Move over the elements that we're about to overwrite.
T *OldEnd = this->end();
this->setEnd(this->end() + NumToInsert);
size_t NumOverwritten = OldEnd-I;
this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten);
// Replace the overwritten part.
std::fill_n(I, NumOverwritten, Elt);
// Insert the non-overwritten middle part.
std::uninitialized_fill_n(OldEnd, NumToInsert-NumOverwritten, Elt);
return I;
}
template<typename ItTy>
iterator insert(iterator I, ItTy From, ItTy To) {
// Convert iterator to elt# to avoid invalidating iterator when we reserve()
size_t InsertElt = I - this->begin();
if (I == this->end()) { // Important special case for empty vector.
append(From, To);
return this->begin()+InsertElt;
}
assert(I >= this->begin() && "Insertion iterator is out of bounds.");
assert(I <= this->end() && "Inserting past the end of the vector.");
size_t NumToInsert = std::distance(From, To);
// Ensure there is enough space.
reserve(static_cast<unsigned>(this->size() + NumToInsert));
// Uninvalidate the iterator.
I = this->begin()+InsertElt;
// If there are more elements between the insertion point and the end of the
// range than there are being inserted, we can use a simple approach to
// insertion. Since we already reserved space, we know that this won't
// reallocate the vector.
if (size_t(this->end()-I) >= NumToInsert) {
T *OldEnd = this->end();
append(this->end()-NumToInsert, this->end());
// Copy the existing elements that get replaced.
this->move_backward(I, OldEnd-NumToInsert, OldEnd);
std::copy(From, To, I);
return I;
}
// Otherwise, we're inserting more elements than exist already, and we're
// not inserting at the end.
// Move over the elements that we're about to overwrite.
T *OldEnd = this->end();
this->setEnd(this->end() + NumToInsert);
size_t NumOverwritten = OldEnd-I;
this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten);
// Replace the overwritten part.
for (T *J = I; NumOverwritten > 0; --NumOverwritten) {
*J = *From;
++J; ++From;
}
// Insert the non-overwritten middle part.
this->uninitialized_copy(From, To, OldEnd);
return I;
}
SmallVectorImpl &operator=(const SmallVectorImpl &RHS);
#if LLVM_HAS_RVALUE_REFERENCES
SmallVectorImpl &operator=(SmallVectorImpl &&RHS);
#endif
bool operator==(const SmallVectorImpl &RHS) const {
if (this->size() != RHS.size()) return false;
return std::equal(this->begin(), this->end(), RHS.begin());
}
bool operator!=(const SmallVectorImpl &RHS) const {
return !(*this == RHS);
}
bool operator<(const SmallVectorImpl &RHS) const {
return std::lexicographical_compare(this->begin(), this->end(),
RHS.begin(), RHS.end());
}
/// Set the array size to \p N, which the current array must have enough
/// capacity for.
///
/// This does not construct or destroy any elements in the vector.
///
/// Clients can use this in conjunction with capacity() to write past the end
/// of the buffer when they know that more elements are available, and only
/// update the size later. This avoids the cost of value initializing elements
/// which will only be overwritten.
void set_size(unsigned N) {
assert(N <= this->capacity());
this->setEnd(this->begin() + N);
}
};
template <typename T>
void SmallVectorImpl<T>::swap(SmallVectorImpl<T> &RHS) {
if (this == &RHS) return;
// We can only avoid copying elements if neither vector is small.
if (!this->isSmall() && !RHS.isSmall()) {
std::swap(this->BeginX, RHS.BeginX);
std::swap(this->EndX, RHS.EndX);
std::swap(this->CapacityX, RHS.CapacityX);
return;
}
if (RHS.size() > this->capacity())
this->grow(RHS.size());
if (this->size() > RHS.capacity())
RHS.grow(this->size());
// Swap the shared elements.
size_t NumShared = this->size();
if (NumShared > RHS.size()) NumShared = RHS.size();
for (unsigned i = 0; i != static_cast<unsigned>(NumShared); ++i)
std::swap((*this)[i], RHS[i]);
// Copy over the extra elts.
if (this->size() > RHS.size()) {
size_t EltDiff = this->size() - RHS.size();
this->uninitialized_copy(this->begin()+NumShared, this->end(), RHS.end());
RHS.setEnd(RHS.end()+EltDiff);
this->destroy_range(this->begin()+NumShared, this->end());
this->setEnd(this->begin()+NumShared);
} else if (RHS.size() > this->size()) {
size_t EltDiff = RHS.size() - this->size();
this->uninitialized_copy(RHS.begin()+NumShared, RHS.end(), this->end());
this->setEnd(this->end() + EltDiff);
this->destroy_range(RHS.begin()+NumShared, RHS.end());
RHS.setEnd(RHS.begin()+NumShared);
}
}
template <typename T>
SmallVectorImpl<T> &SmallVectorImpl<T>::
operator=(const SmallVectorImpl<T> &RHS) {
// Avoid self-assignment.
if (this == &RHS) return *this;
// If we already have sufficient space, assign the common elements, then
// destroy any excess.
size_t RHSSize = RHS.size();
size_t CurSize = this->size();
if (CurSize >= RHSSize) {
// Assign common elements.
iterator NewEnd;
if (RHSSize)
NewEnd = std::copy(RHS.begin(), RHS.begin()+RHSSize, this->begin());
else
NewEnd = this->begin();
// Destroy excess elements.
this->destroy_range(NewEnd, this->end());
// Trim.
this->setEnd(NewEnd);
return *this;
}
// If we have to grow to have enough elements, destroy the current elements.
// This allows us to avoid copying them during the grow.
// FIXME: don't do this if they're efficiently moveable.
if (this->capacity() < RHSSize) {
// Destroy current elements.
this->destroy_range(this->begin(), this->end());
this->setEnd(this->begin());
CurSize = 0;
this->grow(RHSSize);
} else if (CurSize) {
// Otherwise, use assignment for the already-constructed elements.
std::copy(RHS.begin(), RHS.begin()+CurSize, this->begin());
}
// Copy construct the new elements in place.
this->uninitialized_copy(RHS.begin()+CurSize, RHS.end(),
this->begin()+CurSize);
// Set end.
this->setEnd(this->begin()+RHSSize);
return *this;
}
#if LLVM_HAS_RVALUE_REFERENCES
template <typename T>
SmallVectorImpl<T> &SmallVectorImpl<T>::operator=(SmallVectorImpl<T> &&RHS) {
// Avoid self-assignment.
if (this == &RHS) return *this;
// If the RHS isn't small, clear this vector and then steal its buffer.
if (!RHS.isSmall()) {
this->destroy_range(this->begin(), this->end());
if (!this->isSmall()) free(this->begin());
this->BeginX = RHS.BeginX;
this->EndX = RHS.EndX;
this->CapacityX = RHS.CapacityX;
RHS.resetToSmall();
return *this;
}
// If we already have sufficient space, assign the common elements, then
// destroy any excess.
size_t RHSSize = RHS.size();
size_t CurSize = this->size();
if (CurSize >= RHSSize) {
// Assign common elements.
iterator NewEnd = this->begin();
if (RHSSize)
NewEnd = this->move(RHS.begin(), RHS.end(), NewEnd);
// Destroy excess elements and trim the bounds.
this->destroy_range(NewEnd, this->end());
this->setEnd(NewEnd);
// Clear the RHS.
RHS.clear();
return *this;
}
// If we have to grow to have enough elements, destroy the current elements.
// This allows us to avoid copying them during the grow.
// FIXME: this may not actually make any sense if we can efficiently move
// elements.
if (this->capacity() < RHSSize) {
// Destroy current elements.
this->destroy_range(this->begin(), this->end());
this->setEnd(this->begin());
CurSize = 0;
this->grow(RHSSize);
} else if (CurSize) {
// Otherwise, use assignment for the already-constructed elements.
this->move(RHS.begin(), RHS.end(), this->begin());
}
// Move-construct the new elements in place.
this->uninitialized_move(RHS.begin()+CurSize, RHS.end(),
this->begin()+CurSize);
// Set end.
this->setEnd(this->begin()+RHSSize);
RHS.clear();
return *this;
}
#endif
/// Storage for the SmallVector elements which aren't contained in
/// SmallVectorTemplateCommon. There are 'N-1' elements here. The remaining '1'
/// element is in the base class. This is specialized for the N=1 and N=0 cases
/// to avoid allocating unnecessary storage.
template <typename T, unsigned N>
struct SmallVectorStorage {
typename SmallVectorTemplateCommon<T>::U InlineElts[N - 1];
};
template <typename T> struct SmallVectorStorage<T, 1> {};
template <typename T> struct SmallVectorStorage<T, 0> {};
/// SmallVector - This is a 'vector' (really, a variable-sized array), optimized
/// for the case when the array is small. It contains some number of elements
/// in-place, which allows it to avoid heap allocation when the actual number of
/// elements is below that threshold. This allows normal "small" cases to be
/// fast without losing generality for large inputs.
///
/// Note that this does not attempt to be exception safe.
///
template <typename T, unsigned N>
class SmallVector : public SmallVectorImpl<T> {
/// Storage - Inline space for elements which aren't stored in the base class.
SmallVectorStorage<T, N> Storage;
public:
SmallVector() : SmallVectorImpl<T>(N) {
}
explicit SmallVector(unsigned Size, const T &Value = T())
: SmallVectorImpl<T>(N) {
this->assign(Size, Value);
}
template<typename ItTy>
SmallVector(ItTy S, ItTy E) : SmallVectorImpl<T>(N) {
this->append(S, E);
}
SmallVector(const SmallVector &RHS) : SmallVectorImpl<T>(N) {
if (!RHS.empty())
SmallVectorImpl<T>::operator=(RHS);
}
const SmallVector &operator=(const SmallVector &RHS) {
SmallVectorImpl<T>::operator=(RHS);
return *this;
}
#if LLVM_HAS_RVALUE_REFERENCES
SmallVector(SmallVector &&RHS) : SmallVectorImpl<T>(N) {
if (!RHS.empty())
SmallVectorImpl<T>::operator=(::std::move(RHS));
}
const SmallVector &operator=(SmallVector &&RHS) {
SmallVectorImpl<T>::operator=(::std::move(RHS));
return *this;
}
#endif
};
template<typename T, unsigned N>
static inline size_t capacity_in_bytes(const SmallVector<T, N> &X) {
return X.capacity_in_bytes();
}
} // End llvm namespace
namespace std {
/// Implement std::swap in terms of SmallVector swap.
template<typename T>
inline void
swap(llvm::SmallVectorImpl<T> &LHS, llvm::SmallVectorImpl<T> &RHS) {
LHS.swap(RHS);
}
/// Implement std::swap in terms of SmallVector swap.
template<typename T, unsigned N>
inline void
swap(llvm::SmallVector<T, N> &LHS, llvm::SmallVector<T, N> &RHS) {
LHS.swap(RHS);
}
}
#endif

View File

@@ -0,0 +1,897 @@
//===- llvm/ADT/SparseBitVector.h - Efficient Sparse BitVector -*- C++ -*- ===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the SparseBitVector class. See the doxygen comment for
// SparseBitVector for more details on the algorithm used.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_SPARSEBITVECTOR_H
#define LLVM_ADT_SPARSEBITVECTOR_H
#include "llvm/ADT/ilist.h"
#include "llvm/ADT/ilist_node.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <climits>
namespace llvm {
/// SparseBitVector is an implementation of a bitvector that is sparse by only
/// storing the elements that have non-zero bits set. In order to make this
/// fast for the most common cases, SparseBitVector is implemented as a linked
/// list of SparseBitVectorElements. We maintain a pointer to the last
/// SparseBitVectorElement accessed (in the form of a list iterator), in order
/// to make multiple in-order test/set constant time after the first one is
/// executed. Note that using vectors to store SparseBitVectorElement's does
/// not work out very well because it causes insertion in the middle to take
/// enormous amounts of time with a large amount of bits. Other structures that
/// have better worst cases for insertion in the middle (various balanced trees,
/// etc) do not perform as well in practice as a linked list with this iterator
/// kept up to date. They are also significantly more memory intensive.
template <unsigned ElementSize = 128>
struct SparseBitVectorElement
: public ilist_node<SparseBitVectorElement<ElementSize> > {
public:
typedef unsigned long BitWord;
enum {
BITWORD_SIZE = sizeof(BitWord) * CHAR_BIT,
BITWORDS_PER_ELEMENT = (ElementSize + BITWORD_SIZE - 1) / BITWORD_SIZE,
BITS_PER_ELEMENT = ElementSize
};
private:
// Index of Element in terms of where first bit starts.
unsigned ElementIndex;
BitWord Bits[BITWORDS_PER_ELEMENT];
// Needed for sentinels
friend struct ilist_sentinel_traits<SparseBitVectorElement>;
SparseBitVectorElement() {
ElementIndex = ~0U;
memset(&Bits[0], 0, sizeof (BitWord) * BITWORDS_PER_ELEMENT);
}
public:
explicit SparseBitVectorElement(unsigned Idx) {
ElementIndex = Idx;
memset(&Bits[0], 0, sizeof (BitWord) * BITWORDS_PER_ELEMENT);
}
// Comparison.
bool operator==(const SparseBitVectorElement &RHS) const {
if (ElementIndex != RHS.ElementIndex)
return false;
for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i)
if (Bits[i] != RHS.Bits[i])
return false;
return true;
}
bool operator!=(const SparseBitVectorElement &RHS) const {
return !(*this == RHS);
}
// Return the bits that make up word Idx in our element.
BitWord word(unsigned Idx) const {
assert (Idx < BITWORDS_PER_ELEMENT);
return Bits[Idx];
}
unsigned index() const {
return ElementIndex;
}
bool empty() const {
for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i)
if (Bits[i])
return false;
return true;
}
void set(unsigned Idx) {
Bits[Idx / BITWORD_SIZE] |= 1L << (Idx % BITWORD_SIZE);
}
bool test_and_set (unsigned Idx) {
bool old = test(Idx);
if (!old) {
set(Idx);
return true;
}
return false;
}
void reset(unsigned Idx) {
Bits[Idx / BITWORD_SIZE] &= ~(1L << (Idx % BITWORD_SIZE));
}
bool test(unsigned Idx) const {
return Bits[Idx / BITWORD_SIZE] & (1L << (Idx % BITWORD_SIZE));
}
unsigned count() const {
unsigned NumBits = 0;
for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i)
if (sizeof(BitWord) == 4)
NumBits += CountPopulation_32(Bits[i]);
else if (sizeof(BitWord) == 8)
NumBits += CountPopulation_64(Bits[i]);
else
llvm_unreachable("Unsupported!");
return NumBits;
}
/// find_first - Returns the index of the first set bit.
int find_first() const {
for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i)
if (Bits[i] != 0) {
if (sizeof(BitWord) == 4)
return i * BITWORD_SIZE + CountTrailingZeros_32(Bits[i]);
if (sizeof(BitWord) == 8)
return i * BITWORD_SIZE + CountTrailingZeros_64(Bits[i]);
llvm_unreachable("Unsupported!");
}
llvm_unreachable("Illegal empty element");
}
/// find_next - Returns the index of the next set bit starting from the
/// "Curr" bit. Returns -1 if the next set bit is not found.
int find_next(unsigned Curr) const {
if (Curr >= BITS_PER_ELEMENT)
return -1;
unsigned WordPos = Curr / BITWORD_SIZE;
unsigned BitPos = Curr % BITWORD_SIZE;
BitWord Copy = Bits[WordPos];
assert (WordPos <= BITWORDS_PER_ELEMENT
&& "Word Position outside of element");
// Mask off previous bits.
Copy &= ~0UL << BitPos;
if (Copy != 0) {
if (sizeof(BitWord) == 4)
return WordPos * BITWORD_SIZE + CountTrailingZeros_32(Copy);
if (sizeof(BitWord) == 8)
return WordPos * BITWORD_SIZE + CountTrailingZeros_64(Copy);
llvm_unreachable("Unsupported!");
}
// Check subsequent words.
for (unsigned i = WordPos+1; i < BITWORDS_PER_ELEMENT; ++i)
if (Bits[i] != 0) {
if (sizeof(BitWord) == 4)
return i * BITWORD_SIZE + CountTrailingZeros_32(Bits[i]);
if (sizeof(BitWord) == 8)
return i * BITWORD_SIZE + CountTrailingZeros_64(Bits[i]);
llvm_unreachable("Unsupported!");
}
return -1;
}
// Union this element with RHS and return true if this one changed.
bool unionWith(const SparseBitVectorElement &RHS) {
bool changed = false;
for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) {
BitWord old = changed ? 0 : Bits[i];
Bits[i] |= RHS.Bits[i];
if (!changed && old != Bits[i])
changed = true;
}
return changed;
}
// Return true if we have any bits in common with RHS
bool intersects(const SparseBitVectorElement &RHS) const {
for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) {
if (RHS.Bits[i] & Bits[i])
return true;
}
return false;
}
// Intersect this Element with RHS and return true if this one changed.
// BecameZero is set to true if this element became all-zero bits.
bool intersectWith(const SparseBitVectorElement &RHS,
bool &BecameZero) {
bool changed = false;
bool allzero = true;
BecameZero = false;
for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) {
BitWord old = changed ? 0 : Bits[i];
Bits[i] &= RHS.Bits[i];
if (Bits[i] != 0)
allzero = false;
if (!changed && old != Bits[i])
changed = true;
}
BecameZero = allzero;
return changed;
}
// Intersect this Element with the complement of RHS and return true if this
// one changed. BecameZero is set to true if this element became all-zero
// bits.
bool intersectWithComplement(const SparseBitVectorElement &RHS,
bool &BecameZero) {
bool changed = false;
bool allzero = true;
BecameZero = false;
for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) {
BitWord old = changed ? 0 : Bits[i];
Bits[i] &= ~RHS.Bits[i];
if (Bits[i] != 0)
allzero = false;
if (!changed && old != Bits[i])
changed = true;
}
BecameZero = allzero;
return changed;
}
// Three argument version of intersectWithComplement that intersects
// RHS1 & ~RHS2 into this element
void intersectWithComplement(const SparseBitVectorElement &RHS1,
const SparseBitVectorElement &RHS2,
bool &BecameZero) {
bool allzero = true;
BecameZero = false;
for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) {
Bits[i] = RHS1.Bits[i] & ~RHS2.Bits[i];
if (Bits[i] != 0)
allzero = false;
}
BecameZero = allzero;
}
};
template <unsigned ElementSize>
struct ilist_traits<SparseBitVectorElement<ElementSize> >
: public ilist_default_traits<SparseBitVectorElement<ElementSize> > {
typedef SparseBitVectorElement<ElementSize> Element;
Element *createSentinel() const { return static_cast<Element *>(&Sentinel); }
static void destroySentinel(Element *) {}
Element *provideInitialHead() const { return createSentinel(); }
Element *ensureHead(Element *) const { return createSentinel(); }
static void noteHead(Element *, Element *) {}
private:
mutable ilist_half_node<Element> Sentinel;
};
template <unsigned ElementSize = 128>
class SparseBitVector {
typedef ilist<SparseBitVectorElement<ElementSize> > ElementList;
typedef typename ElementList::iterator ElementListIter;
typedef typename ElementList::const_iterator ElementListConstIter;
enum {
BITWORD_SIZE = SparseBitVectorElement<ElementSize>::BITWORD_SIZE
};
// Pointer to our current Element.
ElementListIter CurrElementIter;
ElementList Elements;
// This is like std::lower_bound, except we do linear searching from the
// current position.
ElementListIter FindLowerBound(unsigned ElementIndex) {
if (Elements.empty()) {
CurrElementIter = Elements.begin();
return Elements.begin();
}
// Make sure our current iterator is valid.
if (CurrElementIter == Elements.end())
--CurrElementIter;
// Search from our current iterator, either backwards or forwards,
// depending on what element we are looking for.
ElementListIter ElementIter = CurrElementIter;
if (CurrElementIter->index() == ElementIndex) {
return ElementIter;
} else if (CurrElementIter->index() > ElementIndex) {
while (ElementIter != Elements.begin()
&& ElementIter->index() > ElementIndex)
--ElementIter;
} else {
while (ElementIter != Elements.end() &&
ElementIter->index() < ElementIndex)
++ElementIter;
}
CurrElementIter = ElementIter;
return ElementIter;
}
// Iterator to walk set bits in the bitmap. This iterator is a lot uglier
// than it would be, in order to be efficient.
class SparseBitVectorIterator {
private:
bool AtEnd;
const SparseBitVector<ElementSize> *BitVector;
// Current element inside of bitmap.
ElementListConstIter Iter;
// Current bit number inside of our bitmap.
unsigned BitNumber;
// Current word number inside of our element.
unsigned WordNumber;
// Current bits from the element.
typename SparseBitVectorElement<ElementSize>::BitWord Bits;
// Move our iterator to the first non-zero bit in the bitmap.
void AdvanceToFirstNonZero() {
if (AtEnd)
return;
if (BitVector->Elements.empty()) {
AtEnd = true;
return;
}
Iter = BitVector->Elements.begin();
BitNumber = Iter->index() * ElementSize;
unsigned BitPos = Iter->find_first();
BitNumber += BitPos;
WordNumber = (BitNumber % ElementSize) / BITWORD_SIZE;
Bits = Iter->word(WordNumber);
Bits >>= BitPos % BITWORD_SIZE;
}
// Move our iterator to the next non-zero bit.
void AdvanceToNextNonZero() {
if (AtEnd)
return;
while (Bits && !(Bits & 1)) {
Bits >>= 1;
BitNumber += 1;
}
// See if we ran out of Bits in this word.
if (!Bits) {
int NextSetBitNumber = Iter->find_next(BitNumber % ElementSize) ;
// If we ran out of set bits in this element, move to next element.
if (NextSetBitNumber == -1 || (BitNumber % ElementSize == 0)) {
++Iter;
WordNumber = 0;
// We may run out of elements in the bitmap.
if (Iter == BitVector->Elements.end()) {
AtEnd = true;
return;
}
// Set up for next non zero word in bitmap.
BitNumber = Iter->index() * ElementSize;
NextSetBitNumber = Iter->find_first();
BitNumber += NextSetBitNumber;
WordNumber = (BitNumber % ElementSize) / BITWORD_SIZE;
Bits = Iter->word(WordNumber);
Bits >>= NextSetBitNumber % BITWORD_SIZE;
} else {
WordNumber = (NextSetBitNumber % ElementSize) / BITWORD_SIZE;
Bits = Iter->word(WordNumber);
Bits >>= NextSetBitNumber % BITWORD_SIZE;
BitNumber = Iter->index() * ElementSize;
BitNumber += NextSetBitNumber;
}
}
}
public:
// Preincrement.
inline SparseBitVectorIterator& operator++() {
++BitNumber;
Bits >>= 1;
AdvanceToNextNonZero();
return *this;
}
// Postincrement.
inline SparseBitVectorIterator operator++(int) {
SparseBitVectorIterator tmp = *this;
++*this;
return tmp;
}
// Return the current set bit number.
unsigned operator*() const {
return BitNumber;
}
bool operator==(const SparseBitVectorIterator &RHS) const {
// If they are both at the end, ignore the rest of the fields.
if (AtEnd && RHS.AtEnd)
return true;
// Otherwise they are the same if they have the same bit number and
// bitmap.
return AtEnd == RHS.AtEnd && RHS.BitNumber == BitNumber;
}
bool operator!=(const SparseBitVectorIterator &RHS) const {
return !(*this == RHS);
}
SparseBitVectorIterator(): BitVector(NULL) {
}
SparseBitVectorIterator(const SparseBitVector<ElementSize> *RHS,
bool end = false):BitVector(RHS) {
Iter = BitVector->Elements.begin();
BitNumber = 0;
Bits = 0;
WordNumber = ~0;
AtEnd = end;
AdvanceToFirstNonZero();
}
};
public:
typedef SparseBitVectorIterator iterator;
SparseBitVector () {
CurrElementIter = Elements.begin ();
}
~SparseBitVector() {
}
// SparseBitVector copy ctor.
SparseBitVector(const SparseBitVector &RHS) {
ElementListConstIter ElementIter = RHS.Elements.begin();
while (ElementIter != RHS.Elements.end()) {
Elements.push_back(SparseBitVectorElement<ElementSize>(*ElementIter));
++ElementIter;
}
CurrElementIter = Elements.begin ();
}
// Clear.
void clear() {
Elements.clear();
}
// Assignment
SparseBitVector& operator=(const SparseBitVector& RHS) {
Elements.clear();
ElementListConstIter ElementIter = RHS.Elements.begin();
while (ElementIter != RHS.Elements.end()) {
Elements.push_back(SparseBitVectorElement<ElementSize>(*ElementIter));
++ElementIter;
}
CurrElementIter = Elements.begin ();
return *this;
}
// Test, Reset, and Set a bit in the bitmap.
bool test(unsigned Idx) {
if (Elements.empty())
return false;
unsigned ElementIndex = Idx / ElementSize;
ElementListIter ElementIter = FindLowerBound(ElementIndex);
// If we can't find an element that is supposed to contain this bit, there
// is nothing more to do.
if (ElementIter == Elements.end() ||
ElementIter->index() != ElementIndex)
return false;
return ElementIter->test(Idx % ElementSize);
}
void reset(unsigned Idx) {
if (Elements.empty())
return;
unsigned ElementIndex = Idx / ElementSize;
ElementListIter ElementIter = FindLowerBound(ElementIndex);
// If we can't find an element that is supposed to contain this bit, there
// is nothing more to do.
if (ElementIter == Elements.end() ||
ElementIter->index() != ElementIndex)
return;
ElementIter->reset(Idx % ElementSize);
// When the element is zeroed out, delete it.
if (ElementIter->empty()) {
++CurrElementIter;
Elements.erase(ElementIter);
}
}
void set(unsigned Idx) {
unsigned ElementIndex = Idx / ElementSize;
SparseBitVectorElement<ElementSize> *Element;
ElementListIter ElementIter;
if (Elements.empty()) {
Element = new SparseBitVectorElement<ElementSize>(ElementIndex);
ElementIter = Elements.insert(Elements.end(), Element);
} else {
ElementIter = FindLowerBound(ElementIndex);
if (ElementIter == Elements.end() ||
ElementIter->index() != ElementIndex) {
Element = new SparseBitVectorElement<ElementSize>(ElementIndex);
// We may have hit the beginning of our SparseBitVector, in which case,
// we may need to insert right after this element, which requires moving
// the current iterator forward one, because insert does insert before.
if (ElementIter != Elements.end() &&
ElementIter->index() < ElementIndex)
ElementIter = Elements.insert(++ElementIter, Element);
else
ElementIter = Elements.insert(ElementIter, Element);
}
}
CurrElementIter = ElementIter;
ElementIter->set(Idx % ElementSize);
}
bool test_and_set (unsigned Idx) {
bool old = test(Idx);
if (!old) {
set(Idx);
return true;
}
return false;
}
bool operator!=(const SparseBitVector &RHS) const {
return !(*this == RHS);
}
bool operator==(const SparseBitVector &RHS) const {
ElementListConstIter Iter1 = Elements.begin();
ElementListConstIter Iter2 = RHS.Elements.begin();
for (; Iter1 != Elements.end() && Iter2 != RHS.Elements.end();
++Iter1, ++Iter2) {
if (*Iter1 != *Iter2)
return false;
}
return Iter1 == Elements.end() && Iter2 == RHS.Elements.end();
}
// Union our bitmap with the RHS and return true if we changed.
bool operator|=(const SparseBitVector &RHS) {
bool changed = false;
ElementListIter Iter1 = Elements.begin();
ElementListConstIter Iter2 = RHS.Elements.begin();
// If RHS is empty, we are done
if (RHS.Elements.empty())
return false;
while (Iter2 != RHS.Elements.end()) {
if (Iter1 == Elements.end() || Iter1->index() > Iter2->index()) {
Elements.insert(Iter1,
new SparseBitVectorElement<ElementSize>(*Iter2));
++Iter2;
changed = true;
} else if (Iter1->index() == Iter2->index()) {
changed |= Iter1->unionWith(*Iter2);
++Iter1;
++Iter2;
} else {
++Iter1;
}
}
CurrElementIter = Elements.begin();
return changed;
}
// Intersect our bitmap with the RHS and return true if ours changed.
bool operator&=(const SparseBitVector &RHS) {
bool changed = false;
ElementListIter Iter1 = Elements.begin();
ElementListConstIter Iter2 = RHS.Elements.begin();
// Check if both bitmaps are empty.
if (Elements.empty() && RHS.Elements.empty())
return false;
// Loop through, intersecting as we go, erasing elements when necessary.
while (Iter2 != RHS.Elements.end()) {
if (Iter1 == Elements.end()) {
CurrElementIter = Elements.begin();
return changed;
}
if (Iter1->index() > Iter2->index()) {
++Iter2;
} else if (Iter1->index() == Iter2->index()) {
bool BecameZero;
changed |= Iter1->intersectWith(*Iter2, BecameZero);
if (BecameZero) {
ElementListIter IterTmp = Iter1;
++Iter1;
Elements.erase(IterTmp);
} else {
++Iter1;
}
++Iter2;
} else {
ElementListIter IterTmp = Iter1;
++Iter1;
Elements.erase(IterTmp);
}
}
Elements.erase(Iter1, Elements.end());
CurrElementIter = Elements.begin();
return changed;
}
// Intersect our bitmap with the complement of the RHS and return true
// if ours changed.
bool intersectWithComplement(const SparseBitVector &RHS) {
bool changed = false;
ElementListIter Iter1 = Elements.begin();
ElementListConstIter Iter2 = RHS.Elements.begin();
// If either our bitmap or RHS is empty, we are done
if (Elements.empty() || RHS.Elements.empty())
return false;
// Loop through, intersecting as we go, erasing elements when necessary.
while (Iter2 != RHS.Elements.end()) {
if (Iter1 == Elements.end()) {
CurrElementIter = Elements.begin();
return changed;
}
if (Iter1->index() > Iter2->index()) {
++Iter2;
} else if (Iter1->index() == Iter2->index()) {
bool BecameZero;
changed |= Iter1->intersectWithComplement(*Iter2, BecameZero);
if (BecameZero) {
ElementListIter IterTmp = Iter1;
++Iter1;
Elements.erase(IterTmp);
} else {
++Iter1;
}
++Iter2;
} else {
++Iter1;
}
}
CurrElementIter = Elements.begin();
return changed;
}
bool intersectWithComplement(const SparseBitVector<ElementSize> *RHS) const {
return intersectWithComplement(*RHS);
}
// Three argument version of intersectWithComplement.
// Result of RHS1 & ~RHS2 is stored into this bitmap.
void intersectWithComplement(const SparseBitVector<ElementSize> &RHS1,
const SparseBitVector<ElementSize> &RHS2)
{
Elements.clear();
CurrElementIter = Elements.begin();
ElementListConstIter Iter1 = RHS1.Elements.begin();
ElementListConstIter Iter2 = RHS2.Elements.begin();
// If RHS1 is empty, we are done
// If RHS2 is empty, we still have to copy RHS1
if (RHS1.Elements.empty())
return;
// Loop through, intersecting as we go, erasing elements when necessary.
while (Iter2 != RHS2.Elements.end()) {
if (Iter1 == RHS1.Elements.end())
return;
if (Iter1->index() > Iter2->index()) {
++Iter2;
} else if (Iter1->index() == Iter2->index()) {
bool BecameZero = false;
SparseBitVectorElement<ElementSize> *NewElement =
new SparseBitVectorElement<ElementSize>(Iter1->index());
NewElement->intersectWithComplement(*Iter1, *Iter2, BecameZero);
if (!BecameZero) {
Elements.push_back(NewElement);
}
else
delete NewElement;
++Iter1;
++Iter2;
} else {
SparseBitVectorElement<ElementSize> *NewElement =
new SparseBitVectorElement<ElementSize>(*Iter1);
Elements.push_back(NewElement);
++Iter1;
}
}
// copy the remaining elements
while (Iter1 != RHS1.Elements.end()) {
SparseBitVectorElement<ElementSize> *NewElement =
new SparseBitVectorElement<ElementSize>(*Iter1);
Elements.push_back(NewElement);
++Iter1;
}
return;
}
void intersectWithComplement(const SparseBitVector<ElementSize> *RHS1,
const SparseBitVector<ElementSize> *RHS2) {
intersectWithComplement(*RHS1, *RHS2);
}
bool intersects(const SparseBitVector<ElementSize> *RHS) const {
return intersects(*RHS);
}
// Return true if we share any bits in common with RHS
bool intersects(const SparseBitVector<ElementSize> &RHS) const {
ElementListConstIter Iter1 = Elements.begin();
ElementListConstIter Iter2 = RHS.Elements.begin();
// Check if both bitmaps are empty.
if (Elements.empty() && RHS.Elements.empty())
return false;
// Loop through, intersecting stopping when we hit bits in common.
while (Iter2 != RHS.Elements.end()) {
if (Iter1 == Elements.end())
return false;
if (Iter1->index() > Iter2->index()) {
++Iter2;
} else if (Iter1->index() == Iter2->index()) {
if (Iter1->intersects(*Iter2))
return true;
++Iter1;
++Iter2;
} else {
++Iter1;
}
}
return false;
}
// Return true iff all bits set in this SparseBitVector are
// also set in RHS.
bool contains(const SparseBitVector<ElementSize> &RHS) const {
SparseBitVector<ElementSize> Result(*this);
Result &= RHS;
return (Result == RHS);
}
// Return the first set bit in the bitmap. Return -1 if no bits are set.
int find_first() const {
if (Elements.empty())
return -1;
const SparseBitVectorElement<ElementSize> &First = *(Elements.begin());
return (First.index() * ElementSize) + First.find_first();
}
// Return true if the SparseBitVector is empty
bool empty() const {
return Elements.empty();
}
unsigned count() const {
unsigned BitCount = 0;
for (ElementListConstIter Iter = Elements.begin();
Iter != Elements.end();
++Iter)
BitCount += Iter->count();
return BitCount;
}
iterator begin() const {
return iterator(this);
}
iterator end() const {
return iterator(this, true);
}
};
// Convenience functions to allow Or and And without dereferencing in the user
// code.
template <unsigned ElementSize>
inline bool operator |=(SparseBitVector<ElementSize> &LHS,
const SparseBitVector<ElementSize> *RHS) {
return LHS |= *RHS;
}
template <unsigned ElementSize>
inline bool operator |=(SparseBitVector<ElementSize> *LHS,
const SparseBitVector<ElementSize> &RHS) {
return LHS->operator|=(RHS);
}
template <unsigned ElementSize>
inline bool operator &=(SparseBitVector<ElementSize> *LHS,
const SparseBitVector<ElementSize> &RHS) {
return LHS->operator&=(RHS);
}
template <unsigned ElementSize>
inline bool operator &=(SparseBitVector<ElementSize> &LHS,
const SparseBitVector<ElementSize> *RHS) {
return LHS &= *RHS;
}
// Convenience functions for infix union, intersection, difference operators.
template <unsigned ElementSize>
inline SparseBitVector<ElementSize>
operator|(const SparseBitVector<ElementSize> &LHS,
const SparseBitVector<ElementSize> &RHS) {
SparseBitVector<ElementSize> Result(LHS);
Result |= RHS;
return Result;
}
template <unsigned ElementSize>
inline SparseBitVector<ElementSize>
operator&(const SparseBitVector<ElementSize> &LHS,
const SparseBitVector<ElementSize> &RHS) {
SparseBitVector<ElementSize> Result(LHS);
Result &= RHS;
return Result;
}
template <unsigned ElementSize>
inline SparseBitVector<ElementSize>
operator-(const SparseBitVector<ElementSize> &LHS,
const SparseBitVector<ElementSize> &RHS) {
SparseBitVector<ElementSize> Result;
Result.intersectWithComplement(LHS, RHS);
return Result;
}
// Dump a SparseBitVector to a stream
template <unsigned ElementSize>
void dump(const SparseBitVector<ElementSize> &LHS, raw_ostream &out) {
out << "[";
typename SparseBitVector<ElementSize>::iterator bi = LHS.begin(),
be = LHS.end();
if (bi != be) {
out << *bi;
for (++bi; bi != be; ++bi) {
out << " " << *bi;
}
}
out << "]\n";
}
} // end namespace llvm
#endif

View File

@@ -0,0 +1,526 @@
//===--- llvm/ADT/SparseMultiSet.h - Sparse multiset ------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the SparseMultiSet class, which adds multiset behavior to
// the SparseSet.
//
// A sparse multiset holds a small number of objects identified by integer keys
// from a moderately sized universe. The sparse multiset uses more memory than
// other containers in order to provide faster operations. Any key can map to
// multiple values. A SparseMultiSetNode class is provided, which serves as a
// convenient base class for the contents of a SparseMultiSet.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_SPARSEMULTISET_H
#define LLVM_ADT_SPARSEMULTISET_H
#include "llvm/ADT/SparseSet.h"
namespace llvm {
/// Fast multiset implementation for objects that can be identified by small
/// unsigned keys.
///
/// SparseMultiSet allocates memory proportional to the size of the key
/// universe, so it is not recommended for building composite data structures.
/// It is useful for algorithms that require a single set with fast operations.
///
/// Compared to DenseSet and DenseMap, SparseMultiSet provides constant-time
/// fast clear() as fast as a vector. The find(), insert(), and erase()
/// operations are all constant time, and typically faster than a hash table.
/// The iteration order doesn't depend on numerical key values, it only depends
/// on the order of insert() and erase() operations. Iteration order is the
/// insertion order. Iteration is only provided over elements of equivalent
/// keys, but iterators are bidirectional.
///
/// Compared to BitVector, SparseMultiSet<unsigned> uses 8x-40x more memory, but
/// offers constant-time clear() and size() operations as well as fast iteration
/// independent on the size of the universe.
///
/// SparseMultiSet contains a dense vector holding all the objects and a sparse
/// array holding indexes into the dense vector. Most of the memory is used by
/// the sparse array which is the size of the key universe. The SparseT template
/// parameter provides a space/speed tradeoff for sets holding many elements.
///
/// When SparseT is uint32_t, find() only touches up to 3 cache lines, but the
/// sparse array uses 4 x Universe bytes.
///
/// When SparseT is uint8_t (the default), find() touches up to 3+[N/256] cache
/// lines, but the sparse array is 4x smaller. N is the number of elements in
/// the set.
///
/// For sets that may grow to thousands of elements, SparseT should be set to
/// uint16_t or uint32_t.
///
/// Multiset behavior is provided by providing doubly linked lists for values
/// that are inlined in the dense vector. SparseMultiSet is a good choice when
/// one desires a growable number of entries per key, as it will retain the
/// SparseSet algorithmic properties despite being growable. Thus, it is often a
/// better choice than a SparseSet of growable containers or a vector of
/// vectors. SparseMultiSet also keeps iterators valid after erasure (provided
/// the iterators don't point to the element erased), allowing for more
/// intuitive and fast removal.
///
/// @tparam ValueT The type of objects in the set.
/// @tparam KeyFunctorT A functor that computes an unsigned index from KeyT.
/// @tparam SparseT An unsigned integer type. See above.
///
template<typename ValueT,
typename KeyFunctorT = llvm::identity<unsigned>,
typename SparseT = uint8_t>
class SparseMultiSet {
/// The actual data that's stored, as a doubly-linked list implemented via
/// indices into the DenseVector. The doubly linked list is implemented
/// circular in Prev indices, and INVALID-terminated in Next indices. This
/// provides efficient access to list tails. These nodes can also be
/// tombstones, in which case they are actually nodes in a single-linked
/// freelist of recyclable slots.
struct SMSNode {
static const unsigned INVALID = ~0U;
ValueT Data;
unsigned Prev;
unsigned Next;
SMSNode(ValueT D, unsigned P, unsigned N) : Data(D), Prev(P), Next(N) { }
/// List tails have invalid Nexts.
bool isTail() const {
return Next == INVALID;
}
/// Whether this node is a tombstone node, and thus is in our freelist.
bool isTombstone() const {
return Prev == INVALID;
}
/// Since the list is circular in Prev, all non-tombstone nodes have a valid
/// Prev.
bool isValid() const { return Prev != INVALID; }
};
typedef typename KeyFunctorT::argument_type KeyT;
typedef SmallVector<SMSNode, 8> DenseT;
DenseT Dense;
SparseT *Sparse;
unsigned Universe;
KeyFunctorT KeyIndexOf;
SparseSetValFunctor<KeyT, ValueT, KeyFunctorT> ValIndexOf;
/// We have a built-in recycler for reusing tombstone slots. This recycler
/// puts a singly-linked free list into tombstone slots, allowing us quick
/// erasure, iterator preservation, and dense size.
unsigned FreelistIdx;
unsigned NumFree;
unsigned sparseIndex(const ValueT &Val) const {
assert(ValIndexOf(Val) < Universe &&
"Invalid key in set. Did object mutate?");
return ValIndexOf(Val);
}
unsigned sparseIndex(const SMSNode &N) const { return sparseIndex(N.Data); }
// Disable copy construction and assignment.
// This data structure is not meant to be used that way.
SparseMultiSet(const SparseMultiSet&) LLVM_DELETED_FUNCTION;
SparseMultiSet &operator=(const SparseMultiSet&) LLVM_DELETED_FUNCTION;
/// Whether the given entry is the head of the list. List heads's previous
/// pointers are to the tail of the list, allowing for efficient access to the
/// list tail. D must be a valid entry node.
bool isHead(const SMSNode &D) const {
assert(D.isValid() && "Invalid node for head");
return Dense[D.Prev].isTail();
}
/// Whether the given entry is a singleton entry, i.e. the only entry with
/// that key.
bool isSingleton(const SMSNode &N) const {
assert(N.isValid() && "Invalid node for singleton");
// Is N its own predecessor?
return &Dense[N.Prev] == &N;
}
/// Add in the given SMSNode. Uses a free entry in our freelist if
/// available. Returns the index of the added node.
unsigned addValue(const ValueT& V, unsigned Prev, unsigned Next) {
if (NumFree == 0) {
Dense.push_back(SMSNode(V, Prev, Next));
return Dense.size() - 1;
}
// Peel off a free slot
unsigned Idx = FreelistIdx;
unsigned NextFree = Dense[Idx].Next;
assert(Dense[Idx].isTombstone() && "Non-tombstone free?");
Dense[Idx] = SMSNode(V, Prev, Next);
FreelistIdx = NextFree;
--NumFree;
return Idx;
}
/// Make the current index a new tombstone. Pushes it onto the freelist.
void makeTombstone(unsigned Idx) {
Dense[Idx].Prev = SMSNode::INVALID;
Dense[Idx].Next = FreelistIdx;
FreelistIdx = Idx;
++NumFree;
}
public:
typedef ValueT value_type;
typedef ValueT &reference;
typedef const ValueT &const_reference;
typedef ValueT *pointer;
typedef const ValueT *const_pointer;
SparseMultiSet()
: Sparse(0), Universe(0), FreelistIdx(SMSNode::INVALID), NumFree(0) { }
~SparseMultiSet() { free(Sparse); }
/// Set the universe size which determines the largest key the set can hold.
/// The universe must be sized before any elements can be added.
///
/// @param U Universe size. All object keys must be less than U.
///
void setUniverse(unsigned U) {
// It's not hard to resize the universe on a non-empty set, but it doesn't
// seem like a likely use case, so we can add that code when we need it.
assert(empty() && "Can only resize universe on an empty map");
// Hysteresis prevents needless reallocations.
if (U >= Universe/4 && U <= Universe)
return;
free(Sparse);
// The Sparse array doesn't actually need to be initialized, so malloc
// would be enough here, but that will cause tools like valgrind to
// complain about branching on uninitialized data.
Sparse = reinterpret_cast<SparseT*>(calloc(U, sizeof(SparseT)));
Universe = U;
}
/// Our iterators are iterators over the collection of objects that share a
/// key.
template<typename SMSPtrTy>
class iterator_base : public std::iterator<std::bidirectional_iterator_tag,
ValueT> {
friend class SparseMultiSet;
SMSPtrTy SMS;
unsigned Idx;
unsigned SparseIdx;
iterator_base(SMSPtrTy P, unsigned I, unsigned SI)
: SMS(P), Idx(I), SparseIdx(SI) { }
/// Whether our iterator has fallen outside our dense vector.
bool isEnd() const {
if (Idx == SMSNode::INVALID)
return true;
assert(Idx < SMS->Dense.size() && "Out of range, non-INVALID Idx?");
return false;
}
/// Whether our iterator is properly keyed, i.e. the SparseIdx is valid
bool isKeyed() const { return SparseIdx < SMS->Universe; }
unsigned Prev() const { return SMS->Dense[Idx].Prev; }
unsigned Next() const { return SMS->Dense[Idx].Next; }
void setPrev(unsigned P) { SMS->Dense[Idx].Prev = P; }
void setNext(unsigned N) { SMS->Dense[Idx].Next = N; }
public:
typedef std::iterator<std::bidirectional_iterator_tag, ValueT> super;
typedef typename super::value_type value_type;
typedef typename super::difference_type difference_type;
typedef typename super::pointer pointer;
typedef typename super::reference reference;
iterator_base(const iterator_base &RHS)
: SMS(RHS.SMS), Idx(RHS.Idx), SparseIdx(RHS.SparseIdx) { }
const iterator_base &operator=(const iterator_base &RHS) {
SMS = RHS.SMS;
Idx = RHS.Idx;
SparseIdx = RHS.SparseIdx;
return *this;
}
reference operator*() const {
assert(isKeyed() && SMS->sparseIndex(SMS->Dense[Idx].Data) == SparseIdx &&
"Dereferencing iterator of invalid key or index");
return SMS->Dense[Idx].Data;
}
pointer operator->() const { return &operator*(); }
/// Comparison operators
bool operator==(const iterator_base &RHS) const {
// end compares equal
if (SMS == RHS.SMS && Idx == RHS.Idx) {
assert((isEnd() || SparseIdx == RHS.SparseIdx) &&
"Same dense entry, but different keys?");
return true;
}
return false;
}
bool operator!=(const iterator_base &RHS) const {
return !operator==(RHS);
}
/// Increment and decrement operators
iterator_base &operator--() { // predecrement - Back up
assert(isKeyed() && "Decrementing an invalid iterator");
assert((isEnd() || !SMS->isHead(SMS->Dense[Idx])) &&
"Decrementing head of list");
// If we're at the end, then issue a new find()
if (isEnd())
Idx = SMS->findIndex(SparseIdx).Prev();
else
Idx = Prev();
return *this;
}
iterator_base &operator++() { // preincrement - Advance
assert(!isEnd() && isKeyed() && "Incrementing an invalid/end iterator");
Idx = Next();
return *this;
}
iterator_base operator--(int) { // postdecrement
iterator_base I(*this);
--*this;
return I;
}
iterator_base operator++(int) { // postincrement
iterator_base I(*this);
++*this;
return I;
}
};
typedef iterator_base<SparseMultiSet *> iterator;
typedef iterator_base<const SparseMultiSet *> const_iterator;
// Convenience types
typedef std::pair<iterator, iterator> RangePair;
/// Returns an iterator past this container. Note that such an iterator cannot
/// be decremented, but will compare equal to other end iterators.
iterator end() { return iterator(this, SMSNode::INVALID, SMSNode::INVALID); }
const_iterator end() const {
return const_iterator(this, SMSNode::INVALID, SMSNode::INVALID);
}
/// Returns true if the set is empty.
///
/// This is not the same as BitVector::empty().
///
bool empty() const { return size() == 0; }
/// Returns the number of elements in the set.
///
/// This is not the same as BitVector::size() which returns the size of the
/// universe.
///
unsigned size() const {
assert(NumFree <= Dense.size() && "Out-of-bounds free entries");
return Dense.size() - NumFree;
}
/// Clears the set. This is a very fast constant time operation.
///
void clear() {
// Sparse does not need to be cleared, see find().
Dense.clear();
NumFree = 0;
FreelistIdx = SMSNode::INVALID;
}
/// Find an element by its index.
///
/// @param Idx A valid index to find.
/// @returns An iterator to the element identified by key, or end().
///
iterator findIndex(unsigned Idx) {
assert(Idx < Universe && "Key out of range");
assert(std::numeric_limits<SparseT>::is_integer &&
!std::numeric_limits<SparseT>::is_signed &&
"SparseT must be an unsigned integer type");
const unsigned Stride = std::numeric_limits<SparseT>::max() + 1u;
for (unsigned i = Sparse[Idx], e = Dense.size(); i < e; i += Stride) {
const unsigned FoundIdx = sparseIndex(Dense[i]);
// Check that we're pointing at the correct entry and that it is the head
// of a valid list.
if (Idx == FoundIdx && Dense[i].isValid() && isHead(Dense[i]))
return iterator(this, i, Idx);
// Stride is 0 when SparseT >= unsigned. We don't need to loop.
if (!Stride)
break;
}
return end();
}
/// Find an element by its key.
///
/// @param Key A valid key to find.
/// @returns An iterator to the element identified by key, or end().
///
iterator find(const KeyT &Key) {
return findIndex(KeyIndexOf(Key));
}
const_iterator find(const KeyT &Key) const {
iterator I = const_cast<SparseMultiSet*>(this)->findIndex(KeyIndexOf(Key));
return const_iterator(I.SMS, I.Idx, KeyIndexOf(Key));
}
/// Returns the number of elements identified by Key. This will be linear in
/// the number of elements of that key.
unsigned count(const KeyT &Key) const {
unsigned Ret = 0;
for (const_iterator It = find(Key); It != end(); ++It)
++Ret;
return Ret;
}
/// Returns true if this set contains an element identified by Key.
bool contains(const KeyT &Key) const {
return find(Key) != end();
}
/// Return the head and tail of the subset's list, otherwise returns end().
iterator getHead(const KeyT &Key) { return find(Key); }
iterator getTail(const KeyT &Key) {
iterator I = find(Key);
if (I != end())
I = iterator(this, I.Prev(), KeyIndexOf(Key));
return I;
}
/// The bounds of the range of items sharing Key K. First member is the head
/// of the list, and the second member is a decrementable end iterator for
/// that key.
RangePair equal_range(const KeyT &K) {
iterator B = find(K);
iterator E = iterator(this, SMSNode::INVALID, B.SparseIdx);
return make_pair(B, E);
}
/// Insert a new element at the tail of the subset list. Returns an iterator
/// to the newly added entry.
iterator insert(const ValueT &Val) {
unsigned Idx = sparseIndex(Val);
iterator I = findIndex(Idx);
unsigned NodeIdx = addValue(Val, SMSNode::INVALID, SMSNode::INVALID);
if (I == end()) {
// Make a singleton list
Sparse[Idx] = NodeIdx;
Dense[NodeIdx].Prev = NodeIdx;
return iterator(this, NodeIdx, Idx);
}
// Stick it at the end.
unsigned HeadIdx = I.Idx;
unsigned TailIdx = I.Prev();
Dense[TailIdx].Next = NodeIdx;
Dense[HeadIdx].Prev = NodeIdx;
Dense[NodeIdx].Prev = TailIdx;
return iterator(this, NodeIdx, Idx);
}
/// Erases an existing element identified by a valid iterator.
///
/// This invalidates iterators pointing at the same entry, but erase() returns
/// an iterator pointing to the next element in the subset's list. This makes
/// it possible to erase selected elements while iterating over the subset:
///
/// tie(I, E) = Set.equal_range(Key);
/// while (I != E)
/// if (test(*I))
/// I = Set.erase(I);
/// else
/// ++I;
///
/// Note that if the last element in the subset list is erased, this will
/// return an end iterator which can be decremented to get the new tail (if it
/// exists):
///
/// tie(B, I) = Set.equal_range(Key);
/// for (bool isBegin = B == I; !isBegin; /* empty */) {
/// isBegin = (--I) == B;
/// if (test(I))
/// break;
/// I = erase(I);
/// }
iterator erase(iterator I) {
assert(I.isKeyed() && !I.isEnd() && !Dense[I.Idx].isTombstone() &&
"erasing invalid/end/tombstone iterator");
// First, unlink the node from its list. Then swap the node out with the
// dense vector's last entry
iterator NextI = unlink(Dense[I.Idx]);
// Put in a tombstone.
makeTombstone(I.Idx);
return NextI;
}
/// Erase all elements with the given key. This invalidates all
/// iterators of that key.
void eraseAll(const KeyT &K) {
for (iterator I = find(K); I != end(); /* empty */)
I = erase(I);
}
private:
/// Unlink the node from its list. Returns the next node in the list.
iterator unlink(const SMSNode &N) {
if (isSingleton(N)) {
// Singleton is already unlinked
assert(N.Next == SMSNode::INVALID && "Singleton has next?");
return iterator(this, SMSNode::INVALID, ValIndexOf(N.Data));
}
if (isHead(N)) {
// If we're the head, then update the sparse array and our next.
Sparse[sparseIndex(N)] = N.Next;
Dense[N.Next].Prev = N.Prev;
return iterator(this, N.Next, ValIndexOf(N.Data));
}
if (N.isTail()) {
// If we're the tail, then update our head and our previous.
findIndex(sparseIndex(N)).setPrev(N.Prev);
Dense[N.Prev].Next = N.Next;
// Give back an end iterator that can be decremented
iterator I(this, N.Prev, ValIndexOf(N.Data));
return ++I;
}
// Otherwise, just drop us
Dense[N.Next].Prev = N.Prev;
Dense[N.Prev].Next = N.Next;
return iterator(this, N.Next, ValIndexOf(N.Data));
}
};
} // end namespace llvm
#endif

View File

@@ -0,0 +1,308 @@
//===--- llvm/ADT/SparseSet.h - Sparse set ----------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the SparseSet class derived from the version described in
// Briggs, Torczon, "An efficient representation for sparse sets", ACM Letters
// on Programming Languages and Systems, Volume 2 Issue 1-4, March-Dec. 1993.
//
// A sparse set holds a small number of objects identified by integer keys from
// a moderately sized universe. The sparse set uses more memory than other
// containers in order to provide faster operations.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_SPARSESET_H
#define LLVM_ADT_SPARSESET_H
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/DataTypes.h"
#include <limits>
namespace llvm {
/// SparseSetValTraits - Objects in a SparseSet are identified by keys that can
/// be uniquely converted to a small integer less than the set's universe. This
/// class allows the set to hold values that differ from the set's key type as
/// long as an index can still be derived from the value. SparseSet never
/// directly compares ValueT, only their indices, so it can map keys to
/// arbitrary values. SparseSetValTraits computes the index from the value
/// object. To compute the index from a key, SparseSet uses a separate
/// KeyFunctorT template argument.
///
/// A simple type declaration, SparseSet<Type>, handles these cases:
/// - unsigned key, identity index, identity value
/// - unsigned key, identity index, fat value providing getSparseSetIndex()
///
/// The type declaration SparseSet<Type, UnaryFunction> handles:
/// - unsigned key, remapped index, identity value (virtual registers)
/// - pointer key, pointer-derived index, identity value (node+ID)
/// - pointer key, pointer-derived index, fat value with getSparseSetIndex()
///
/// Only other, unexpected cases require specializing SparseSetValTraits.
///
/// For best results, ValueT should not require a destructor.
///
template<typename ValueT>
struct SparseSetValTraits {
static unsigned getValIndex(const ValueT &Val) {
return Val.getSparseSetIndex();
}
};
/// SparseSetValFunctor - Helper class for selecting SparseSetValTraits. The
/// generic implementation handles ValueT classes which either provide
/// getSparseSetIndex() or specialize SparseSetValTraits<>.
///
template<typename KeyT, typename ValueT, typename KeyFunctorT>
struct SparseSetValFunctor {
unsigned operator()(const ValueT &Val) const {
return SparseSetValTraits<ValueT>::getValIndex(Val);
}
};
/// SparseSetValFunctor<KeyT, KeyT> - Helper class for the common case of
/// identity key/value sets.
template<typename KeyT, typename KeyFunctorT>
struct SparseSetValFunctor<KeyT, KeyT, KeyFunctorT> {
unsigned operator()(const KeyT &Key) const {
return KeyFunctorT()(Key);
}
};
/// SparseSet - Fast set implmentation for objects that can be identified by
/// small unsigned keys.
///
/// SparseSet allocates memory proportional to the size of the key universe, so
/// it is not recommended for building composite data structures. It is useful
/// for algorithms that require a single set with fast operations.
///
/// Compared to DenseSet and DenseMap, SparseSet provides constant-time fast
/// clear() and iteration as fast as a vector. The find(), insert(), and
/// erase() operations are all constant time, and typically faster than a hash
/// table. The iteration order doesn't depend on numerical key values, it only
/// depends on the order of insert() and erase() operations. When no elements
/// have been erased, the iteration order is the insertion order.
///
/// Compared to BitVector, SparseSet<unsigned> uses 8x-40x more memory, but
/// offers constant-time clear() and size() operations as well as fast
/// iteration independent on the size of the universe.
///
/// SparseSet contains a dense vector holding all the objects and a sparse
/// array holding indexes into the dense vector. Most of the memory is used by
/// the sparse array which is the size of the key universe. The SparseT
/// template parameter provides a space/speed tradeoff for sets holding many
/// elements.
///
/// When SparseT is uint32_t, find() only touches 2 cache lines, but the sparse
/// array uses 4 x Universe bytes.
///
/// When SparseT is uint8_t (the default), find() touches up to 2+[N/256] cache
/// lines, but the sparse array is 4x smaller. N is the number of elements in
/// the set.
///
/// For sets that may grow to thousands of elements, SparseT should be set to
/// uint16_t or uint32_t.
///
/// @tparam ValueT The type of objects in the set.
/// @tparam KeyFunctorT A functor that computes an unsigned index from KeyT.
/// @tparam SparseT An unsigned integer type. See above.
///
template<typename ValueT,
typename KeyFunctorT = llvm::identity<unsigned>,
typename SparseT = uint8_t>
class SparseSet {
typedef typename KeyFunctorT::argument_type KeyT;
typedef SmallVector<ValueT, 8> DenseT;
DenseT Dense;
SparseT *Sparse;
unsigned Universe;
KeyFunctorT KeyIndexOf;
SparseSetValFunctor<KeyT, ValueT, KeyFunctorT> ValIndexOf;
// Disable copy construction and assignment.
// This data structure is not meant to be used that way.
SparseSet(const SparseSet&) LLVM_DELETED_FUNCTION;
SparseSet &operator=(const SparseSet&) LLVM_DELETED_FUNCTION;
public:
typedef ValueT value_type;
typedef ValueT &reference;
typedef const ValueT &const_reference;
typedef ValueT *pointer;
typedef const ValueT *const_pointer;
SparseSet() : Sparse(0), Universe(0) {}
~SparseSet() { free(Sparse); }
/// setUniverse - Set the universe size which determines the largest key the
/// set can hold. The universe must be sized before any elements can be
/// added.
///
/// @param U Universe size. All object keys must be less than U.
///
void setUniverse(unsigned U) {
// It's not hard to resize the universe on a non-empty set, but it doesn't
// seem like a likely use case, so we can add that code when we need it.
assert(empty() && "Can only resize universe on an empty map");
// Hysteresis prevents needless reallocations.
if (U >= Universe/4 && U <= Universe)
return;
free(Sparse);
// The Sparse array doesn't actually need to be initialized, so malloc
// would be enough here, but that will cause tools like valgrind to
// complain about branching on uninitialized data.
Sparse = reinterpret_cast<SparseT*>(calloc(U, sizeof(SparseT)));
Universe = U;
}
// Import trivial vector stuff from DenseT.
typedef typename DenseT::iterator iterator;
typedef typename DenseT::const_iterator const_iterator;
const_iterator begin() const { return Dense.begin(); }
const_iterator end() const { return Dense.end(); }
iterator begin() { return Dense.begin(); }
iterator end() { return Dense.end(); }
/// empty - Returns true if the set is empty.
///
/// This is not the same as BitVector::empty().
///
bool empty() const { return Dense.empty(); }
/// size - Returns the number of elements in the set.
///
/// This is not the same as BitVector::size() which returns the size of the
/// universe.
///
unsigned size() const { return Dense.size(); }
/// clear - Clears the set. This is a very fast constant time operation.
///
void clear() {
// Sparse does not need to be cleared, see find().
Dense.clear();
}
/// findIndex - Find an element by its index.
///
/// @param Idx A valid index to find.
/// @returns An iterator to the element identified by key, or end().
///
iterator findIndex(unsigned Idx) {
assert(Idx < Universe && "Key out of range");
assert(std::numeric_limits<SparseT>::is_integer &&
!std::numeric_limits<SparseT>::is_signed &&
"SparseT must be an unsigned integer type");
const unsigned Stride = std::numeric_limits<SparseT>::max() + 1u;
for (unsigned i = Sparse[Idx], e = size(); i < e; i += Stride) {
const unsigned FoundIdx = ValIndexOf(Dense[i]);
assert(FoundIdx < Universe && "Invalid key in set. Did object mutate?");
if (Idx == FoundIdx)
return begin() + i;
// Stride is 0 when SparseT >= unsigned. We don't need to loop.
if (!Stride)
break;
}
return end();
}
/// find - Find an element by its key.
///
/// @param Key A valid key to find.
/// @returns An iterator to the element identified by key, or end().
///
iterator find(const KeyT &Key) {
return findIndex(KeyIndexOf(Key));
}
const_iterator find(const KeyT &Key) const {
return const_cast<SparseSet*>(this)->findIndex(KeyIndexOf(Key));
}
/// count - Returns true if this set contains an element identified by Key.
///
bool count(const KeyT &Key) const {
return find(Key) != end();
}
/// insert - Attempts to insert a new element.
///
/// If Val is successfully inserted, return (I, true), where I is an iterator
/// pointing to the newly inserted element.
///
/// If the set already contains an element with the same key as Val, return
/// (I, false), where I is an iterator pointing to the existing element.
///
/// Insertion invalidates all iterators.
///
std::pair<iterator, bool> insert(const ValueT &Val) {
unsigned Idx = ValIndexOf(Val);
iterator I = findIndex(Idx);
if (I != end())
return std::make_pair(I, false);
Sparse[Idx] = size();
Dense.push_back(Val);
return std::make_pair(end() - 1, true);
}
/// array subscript - If an element already exists with this key, return it.
/// Otherwise, automatically construct a new value from Key, insert it,
/// and return the newly inserted element.
ValueT &operator[](const KeyT &Key) {
return *insert(ValueT(Key)).first;
}
/// erase - Erases an existing element identified by a valid iterator.
///
/// This invalidates all iterators, but erase() returns an iterator pointing
/// to the next element. This makes it possible to erase selected elements
/// while iterating over the set:
///
/// for (SparseSet::iterator I = Set.begin(); I != Set.end();)
/// if (test(*I))
/// I = Set.erase(I);
/// else
/// ++I;
///
/// Note that end() changes when elements are erased, unlike std::list.
///
iterator erase(iterator I) {
assert(unsigned(I - begin()) < size() && "Invalid iterator");
if (I != end() - 1) {
*I = Dense.back();
unsigned BackIdx = ValIndexOf(Dense.back());
assert(BackIdx < Universe && "Invalid key in set. Did object mutate?");
Sparse[BackIdx] = I - begin();
}
// This depends on SmallVector::pop_back() not invalidating iterators.
// std::vector::pop_back() doesn't give that guarantee.
Dense.pop_back();
return I;
}
/// erase - Erases an element identified by Key, if it exists.
///
/// @param Key The key identifying the element to erase.
/// @returns True when an element was erased, false if no element was found.
///
bool erase(const KeyT &Key) {
iterator I = find(Key);
if (I == end())
return false;
erase(I);
return true;
}
};
} // end namespace llvm
#endif

View File

@@ -0,0 +1,181 @@
//===-- llvm/ADT/Statistic.h - Easy way to expose stats ---------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the 'Statistic' class, which is designed to be an easy way
// to expose various metrics from passes. These statistics are printed at the
// end of a run (from llvm_shutdown), when the -stats command line option is
// passed on the command line.
//
// This is useful for reporting information like the number of instructions
// simplified, optimized or removed by various transformations, like this:
//
// static Statistic NumInstsKilled("gcse", "Number of instructions killed");
//
// Later, in the code: ++NumInstsKilled;
//
// NOTE: Statistics *must* be declared as global variables.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_STATISTIC_H
#define LLVM_ADT_STATISTIC_H
#include "llvm/Support/Atomic.h"
#include "llvm/Support/Valgrind.h"
namespace llvm {
class raw_ostream;
class Statistic {
public:
const char *Name;
const char *Desc;
volatile llvm::sys::cas_flag Value;
bool Initialized;
llvm::sys::cas_flag getValue() const { return Value; }
const char *getName() const { return Name; }
const char *getDesc() const { return Desc; }
/// construct - This should only be called for non-global statistics.
void construct(const char *name, const char *desc) {
Name = name; Desc = desc;
Value = 0; Initialized = 0;
}
// Allow use of this class as the value itself.
operator unsigned() const { return Value; }
#if !defined(NDEBUG) || defined(LLVM_ENABLE_STATS)
const Statistic &operator=(unsigned Val) {
Value = Val;
return init();
}
const Statistic &operator++() {
// FIXME: This function and all those that follow carefully use an
// atomic operation to update the value safely in the presence of
// concurrent accesses, but not to read the return value, so the
// return value is not thread safe.
sys::AtomicIncrement(&Value);
return init();
}
unsigned operator++(int) {
init();
unsigned OldValue = Value;
sys::AtomicIncrement(&Value);
return OldValue;
}
const Statistic &operator--() {
sys::AtomicDecrement(&Value);
return init();
}
unsigned operator--(int) {
init();
unsigned OldValue = Value;
sys::AtomicDecrement(&Value);
return OldValue;
}
const Statistic &operator+=(const unsigned &V) {
if (!V) return *this;
sys::AtomicAdd(&Value, V);
return init();
}
const Statistic &operator-=(const unsigned &V) {
if (!V) return *this;
sys::AtomicAdd(&Value, -V);
return init();
}
const Statistic &operator*=(const unsigned &V) {
sys::AtomicMul(&Value, V);
return init();
}
const Statistic &operator/=(const unsigned &V) {
sys::AtomicDiv(&Value, V);
return init();
}
#else // Statistics are disabled in release builds.
const Statistic &operator=(unsigned Val) {
return *this;
}
const Statistic &operator++() {
return *this;
}
unsigned operator++(int) {
return 0;
}
const Statistic &operator--() {
return *this;
}
unsigned operator--(int) {
return 0;
}
const Statistic &operator+=(const unsigned &V) {
return *this;
}
const Statistic &operator-=(const unsigned &V) {
return *this;
}
const Statistic &operator*=(const unsigned &V) {
return *this;
}
const Statistic &operator/=(const unsigned &V) {
return *this;
}
#endif // !defined(NDEBUG) || defined(LLVM_ENABLE_STATS)
protected:
Statistic &init() {
bool tmp = Initialized;
sys::MemoryFence();
if (!tmp) RegisterStatistic();
TsanHappensAfter(this);
return *this;
}
void RegisterStatistic();
};
// STATISTIC - A macro to make definition of statistics really simple. This
// automatically passes the DEBUG_TYPE of the file into the statistic.
#define STATISTIC(VARNAME, DESC) \
static llvm::Statistic VARNAME = { DEBUG_TYPE, DESC, 0, 0 }
/// \brief Enable the collection and printing of statistics.
void EnableStatistics();
/// \brief Check if statistics are enabled.
bool AreStatisticsEnabled();
/// \brief Print statistics to the file returned by CreateInfoOutputFile().
void PrintStatistics();
/// \brief Print statistics to the given output stream.
void PrintStatistics(raw_ostream &OS);
} // End llvm namespace
#endif

View File

@@ -0,0 +1,164 @@
//===-- llvm/ADT/StringExtras.h - Useful string functions -------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains some functions that are useful when dealing with strings.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_STRINGEXTRAS_H
#define LLVM_ADT_STRINGEXTRAS_H
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/DataTypes.h"
namespace llvm {
template<typename T> class SmallVectorImpl;
/// hexdigit - Return the hexadecimal character for the
/// given number \p X (which should be less than 16).
static inline char hexdigit(unsigned X, bool LowerCase = false) {
const char HexChar = LowerCase ? 'a' : 'A';
return X < 10 ? '0' + X : HexChar + X - 10;
}
/// Interpret the given character \p C as a hexadecimal digit and return its
/// value.
///
/// If \p C is not a valid hex digit, -1U is returned.
static inline unsigned hexDigitValue(char C) {
if (C >= '0' && C <= '9') return C-'0';
if (C >= 'a' && C <= 'f') return C-'a'+10U;
if (C >= 'A' && C <= 'F') return C-'A'+10U;
return -1U;
}
/// utohex_buffer - Emit the specified number into the buffer specified by
/// BufferEnd, returning a pointer to the start of the string. This can be used
/// like this: (note that the buffer must be large enough to handle any number):
/// char Buffer[40];
/// printf("0x%s", utohex_buffer(X, Buffer+40));
///
/// This should only be used with unsigned types.
///
template<typename IntTy>
static inline char *utohex_buffer(IntTy X, char *BufferEnd) {
char *BufPtr = BufferEnd;
*--BufPtr = 0; // Null terminate buffer.
if (X == 0) {
*--BufPtr = '0'; // Handle special case.
return BufPtr;
}
while (X) {
unsigned char Mod = static_cast<unsigned char>(X) & 15;
*--BufPtr = hexdigit(Mod);
X >>= 4;
}
return BufPtr;
}
static inline std::string utohexstr(uint64_t X) {
char Buffer[17];
return utohex_buffer(X, Buffer+17);
}
static inline std::string utostr_32(uint32_t X, bool isNeg = false) {
char Buffer[11];
char *BufPtr = Buffer+11;
if (X == 0) *--BufPtr = '0'; // Handle special case...
while (X) {
*--BufPtr = '0' + char(X % 10);
X /= 10;
}
if (isNeg) *--BufPtr = '-'; // Add negative sign...
return std::string(BufPtr, Buffer+11);
}
static __declspec(noinline) inline std::string utostr(uint64_t X, bool isNeg = false) {
char Buffer[21];
char *BufPtr = Buffer+21;
if (X == 0) *--BufPtr = '0'; // Handle special case...
while (X) {
*--BufPtr = '0' + char(X % 10);
X /= 10;
}
if (isNeg) *--BufPtr = '-'; // Add negative sign...
return std::string(BufPtr, Buffer+21);
}
static inline std::string itostr(int64_t X) {
if (X < 0)
return utostr(static_cast<uint64_t>(-X), true);
else
return utostr(static_cast<uint64_t>(X));
}
/// StrInStrNoCase - Portable version of strcasestr. Locates the first
/// occurrence of string 's1' in string 's2', ignoring case. Returns
/// the offset of s2 in s1 or npos if s2 cannot be found.
StringRef::size_type StrInStrNoCase(StringRef s1, StringRef s2);
/// getToken - This function extracts one token from source, ignoring any
/// leading characters that appear in the Delimiters string, and ending the
/// token at any of the characters that appear in the Delimiters string. If
/// there are no tokens in the source string, an empty string is returned.
/// The function returns a pair containing the extracted token and the
/// remaining tail string.
std::pair<StringRef, StringRef> getToken(StringRef Source,
StringRef Delimiters = " \t\n\v\f\r");
/// SplitString - Split up the specified string according to the specified
/// delimiters, appending the result fragments to the output list.
void SplitString(StringRef Source,
SmallVectorImpl<StringRef> &OutFragments,
StringRef Delimiters = " \t\n\v\f\r");
/// HashString - Hash function for strings.
///
/// This is the Bernstein hash function.
//
// FIXME: Investigate whether a modified bernstein hash function performs
// better: http://eternallyconfuzzled.com/tuts/algorithms/jsw_tut_hashing.aspx
// X*33+c -> X*33^c
static inline unsigned HashString(StringRef Str, unsigned Result = 0) {
for (unsigned i = 0, e = Str.size(); i != e; ++i)
Result = Result * 33 + (unsigned char)Str[i];
return Result;
}
/// Returns the English suffix for an ordinal integer (-st, -nd, -rd, -th).
static inline StringRef getOrdinalSuffix(unsigned Val) {
// It is critically important that we do this perfectly for
// user-written sequences with over 100 elements.
switch (Val % 100) {
case 11:
case 12:
case 13:
return "th";
default:
switch (Val % 10) {
case 1: return "st";
case 2: return "nd";
case 3: return "rd";
default: return "th";
}
}
}
} // End llvm namespace
#endif

View File

@@ -0,0 +1,465 @@
//===--- StringMap.h - String Hash table map interface ----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the StringMap class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_STRINGMAP_H
#define LLVM_ADT_STRINGMAP_H
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Allocator.h"
#include <cstring>
namespace llvm {
template<typename ValueT>
class StringMapConstIterator;
template<typename ValueT>
class StringMapIterator;
template<typename ValueTy>
class StringMapEntry;
/// StringMapEntryInitializer - This datatype can be partially specialized for
/// various datatypes in a stringmap to allow them to be initialized when an
/// entry is default constructed for the map.
template<typename ValueTy>
class StringMapEntryInitializer {
public:
template <typename InitTy>
static void Initialize(StringMapEntry<ValueTy> &T, InitTy InitVal) {
T.second = InitVal;
}
};
/// StringMapEntryBase - Shared base class of StringMapEntry instances.
class StringMapEntryBase {
unsigned StrLen;
public:
explicit StringMapEntryBase(unsigned Len) : StrLen(Len) {}
unsigned getKeyLength() const { return StrLen; }
};
/// StringMapImpl - This is the base class of StringMap that is shared among
/// all of its instantiations.
class StringMapImpl {
protected:
// Array of NumBuckets pointers to entries, null pointers are holes.
// TheTable[NumBuckets] contains a sentinel value for easy iteration. Followed
// by an array of the actual hash values as unsigned integers.
StringMapEntryBase **TheTable;
unsigned NumBuckets;
unsigned NumItems;
unsigned NumTombstones;
unsigned ItemSize;
protected:
explicit StringMapImpl(unsigned itemSize) : ItemSize(itemSize) {
// Initialize the map with zero buckets to allocation.
TheTable = 0;
NumBuckets = 0;
NumItems = 0;
NumTombstones = 0;
}
StringMapImpl(unsigned InitSize, unsigned ItemSize);
void RehashTable();
/// LookupBucketFor - Look up the bucket that the specified string should end
/// up in. If it already exists as a key in the map, the Item pointer for the
/// specified bucket will be non-null. Otherwise, it will be null. In either
/// case, the FullHashValue field of the bucket will be set to the hash value
/// of the string.
unsigned LookupBucketFor(StringRef Key);
/// FindKey - Look up the bucket that contains the specified key. If it exists
/// in the map, return the bucket number of the key. Otherwise return -1.
/// This does not modify the map.
int FindKey(StringRef Key) const;
/// RemoveKey - Remove the specified StringMapEntry from the table, but do not
/// delete it. This aborts if the value isn't in the table.
void RemoveKey(StringMapEntryBase *V);
/// RemoveKey - Remove the StringMapEntry for the specified key from the
/// table, returning it. If the key is not in the table, this returns null.
StringMapEntryBase *RemoveKey(StringRef Key);
private:
void init(unsigned Size);
public:
static StringMapEntryBase *getTombstoneVal() {
return (StringMapEntryBase*)-1;
}
unsigned getNumBuckets() const { return NumBuckets; }
unsigned getNumItems() const { return NumItems; }
bool empty() const { return NumItems == 0; }
unsigned size() const { return NumItems; }
};
/// StringMapEntry - This is used to represent one value that is inserted into
/// a StringMap. It contains the Value itself and the key: the string length
/// and data.
template<typename ValueTy>
class StringMapEntry : public StringMapEntryBase {
public:
ValueTy second;
explicit StringMapEntry(unsigned strLen)
: StringMapEntryBase(strLen), second() {}
StringMapEntry(unsigned strLen, const ValueTy &V)
: StringMapEntryBase(strLen), second(V) {}
StringRef getKey() const {
return StringRef(getKeyData(), getKeyLength());
}
const ValueTy &getValue() const { return second; }
ValueTy &getValue() { return second; }
void setValue(const ValueTy &V) { second = V; }
/// getKeyData - Return the start of the string data that is the key for this
/// value. The string data is always stored immediately after the
/// StringMapEntry object.
const char *getKeyData() const {return reinterpret_cast<const char*>(this+1);}
StringRef first() const { return StringRef(getKeyData(), getKeyLength()); }
/// Create - Create a StringMapEntry for the specified key and default
/// construct the value.
template<typename AllocatorTy, typename InitType>
static StringMapEntry *Create(const char *KeyStart, const char *KeyEnd,
AllocatorTy &Allocator,
InitType InitVal) {
unsigned KeyLength = static_cast<unsigned>(KeyEnd-KeyStart);
// Okay, the item doesn't already exist, and 'Bucket' is the bucket to fill
// in. Allocate a new item with space for the string at the end and a null
// terminator.
unsigned AllocSize = static_cast<unsigned>(sizeof(StringMapEntry))+
KeyLength+1;
unsigned Alignment = alignOf<StringMapEntry>();
StringMapEntry *NewItem =
static_cast<StringMapEntry*>(Allocator.Allocate(AllocSize,Alignment));
// Default construct the value.
new (NewItem) StringMapEntry(KeyLength);
// Copy the string information.
char *StrBuffer = const_cast<char*>(NewItem->getKeyData());
memcpy(StrBuffer, KeyStart, KeyLength);
StrBuffer[KeyLength] = 0; // Null terminate for convenience of clients.
// Initialize the value if the client wants to.
StringMapEntryInitializer<ValueTy>::Initialize(*NewItem, InitVal);
return NewItem;
}
template<typename AllocatorTy>
static StringMapEntry *Create(const char *KeyStart, const char *KeyEnd,
AllocatorTy &Allocator) {
return Create(KeyStart, KeyEnd, Allocator, 0);
}
/// Create - Create a StringMapEntry with normal malloc/free.
template<typename InitType>
static StringMapEntry *Create(const char *KeyStart, const char *KeyEnd,
InitType InitVal) {
MallocAllocator A;
return Create(KeyStart, KeyEnd, A, InitVal);
}
static StringMapEntry *Create(const char *KeyStart, const char *KeyEnd) {
return Create(KeyStart, KeyEnd, ValueTy());
}
/// GetStringMapEntryFromValue - Given a value that is known to be embedded
/// into a StringMapEntry, return the StringMapEntry itself.
static StringMapEntry &GetStringMapEntryFromValue(ValueTy &V) {
StringMapEntry *EPtr = 0;
char *Ptr = reinterpret_cast<char*>(&V) -
(reinterpret_cast<char*>(&EPtr->second) -
reinterpret_cast<char*>(EPtr));
return *reinterpret_cast<StringMapEntry*>(Ptr);
}
static const StringMapEntry &GetStringMapEntryFromValue(const ValueTy &V) {
return GetStringMapEntryFromValue(const_cast<ValueTy&>(V));
}
/// GetStringMapEntryFromKeyData - Given key data that is known to be embedded
/// into a StringMapEntry, return the StringMapEntry itself.
static StringMapEntry &GetStringMapEntryFromKeyData(const char *KeyData) {
char *Ptr = const_cast<char*>(KeyData) - sizeof(StringMapEntry<ValueTy>);
return *reinterpret_cast<StringMapEntry*>(Ptr);
}
/// Destroy - Destroy this StringMapEntry, releasing memory back to the
/// specified allocator.
template<typename AllocatorTy>
void Destroy(AllocatorTy &Allocator) {
// Free memory referenced by the item.
this->~StringMapEntry();
Allocator.Deallocate(this);
}
/// Destroy this object, releasing memory back to the malloc allocator.
void Destroy() {
MallocAllocator A;
Destroy(A);
}
};
/// StringMap - This is an unconventional map that is specialized for handling
/// keys that are "strings", which are basically ranges of bytes. This does some
/// funky memory allocation and hashing things to make it extremely efficient,
/// storing the string data *after* the value in the map.
template<typename ValueTy, typename AllocatorTy = MallocAllocator>
class StringMap : public StringMapImpl {
AllocatorTy Allocator;
public:
typedef StringMapEntry<ValueTy> MapEntryTy;
StringMap() : StringMapImpl(static_cast<unsigned>(sizeof(MapEntryTy))) {}
explicit StringMap(unsigned InitialSize)
: StringMapImpl(InitialSize, static_cast<unsigned>(sizeof(MapEntryTy))) {}
explicit StringMap(AllocatorTy A)
: StringMapImpl(static_cast<unsigned>(sizeof(MapEntryTy))), Allocator(A) {}
StringMap(unsigned InitialSize, AllocatorTy A)
: StringMapImpl(InitialSize, static_cast<unsigned>(sizeof(MapEntryTy))),
Allocator(A) {}
StringMap(const StringMap &RHS)
: StringMapImpl(static_cast<unsigned>(sizeof(MapEntryTy))) {
assert(RHS.empty() &&
"Copy ctor from non-empty stringmap not implemented yet!");
(void)RHS;
}
void operator=(const StringMap &RHS) {
assert(RHS.empty() &&
"assignment from non-empty stringmap not implemented yet!");
(void)RHS;
clear();
}
typedef typename ReferenceAdder<AllocatorTy>::result AllocatorRefTy;
typedef typename ReferenceAdder<const AllocatorTy>::result AllocatorCRefTy;
AllocatorRefTy getAllocator() { return Allocator; }
AllocatorCRefTy getAllocator() const { return Allocator; }
typedef const char* key_type;
typedef ValueTy mapped_type;
typedef StringMapEntry<ValueTy> value_type;
typedef size_t size_type;
typedef StringMapConstIterator<ValueTy> const_iterator;
typedef StringMapIterator<ValueTy> iterator;
iterator begin() {
return iterator(TheTable, NumBuckets == 0);
}
iterator end() {
return iterator(TheTable+NumBuckets, true);
}
const_iterator begin() const {
return const_iterator(TheTable, NumBuckets == 0);
}
const_iterator end() const {
return const_iterator(TheTable+NumBuckets, true);
}
iterator find(StringRef Key) {
int Bucket = FindKey(Key);
if (Bucket == -1) return end();
return iterator(TheTable+Bucket, true);
}
const_iterator find(StringRef Key) const {
int Bucket = FindKey(Key);
if (Bucket == -1) return end();
return const_iterator(TheTable+Bucket, true);
}
/// lookup - Return the entry for the specified key, or a default
/// constructed value if no such entry exists.
ValueTy lookup(StringRef Key) const {
const_iterator it = find(Key);
if (it != end())
return it->second;
return ValueTy();
}
ValueTy &operator[](StringRef Key) {
return GetOrCreateValue(Key).getValue();
}
size_type count(StringRef Key) const {
return find(Key) == end() ? 0 : 1;
}
/// insert - Insert the specified key/value pair into the map. If the key
/// already exists in the map, return false and ignore the request, otherwise
/// insert it and return true.
bool insert(MapEntryTy *KeyValue) {
unsigned BucketNo = LookupBucketFor(KeyValue->getKey());
StringMapEntryBase *&Bucket = TheTable[BucketNo];
if (Bucket && Bucket != getTombstoneVal())
return false; // Already exists in map.
if (Bucket == getTombstoneVal())
--NumTombstones;
Bucket = KeyValue;
++NumItems;
assert(NumItems + NumTombstones <= NumBuckets);
RehashTable();
return true;
}
// clear - Empties out the StringMap
void clear() {
if (empty()) return;
// Zap all values, resetting the keys back to non-present (not tombstone),
// which is safe because we're removing all elements.
for (unsigned I = 0, E = NumBuckets; I != E; ++I) {
StringMapEntryBase *&Bucket = TheTable[I];
if (Bucket && Bucket != getTombstoneVal()) {
static_cast<MapEntryTy*>(Bucket)->Destroy(Allocator);
}
Bucket = 0;
}
NumItems = 0;
NumTombstones = 0;
}
/// GetOrCreateValue - Look up the specified key in the table. If a value
/// exists, return it. Otherwise, default construct a value, insert it, and
/// return.
template <typename InitTy>
MapEntryTy &GetOrCreateValue(StringRef Key, InitTy Val) {
unsigned BucketNo = LookupBucketFor(Key);
StringMapEntryBase *&Bucket = TheTable[BucketNo];
if (Bucket && Bucket != getTombstoneVal())
return *static_cast<MapEntryTy*>(Bucket);
MapEntryTy *NewItem =
MapEntryTy::Create(Key.begin(), Key.end(), Allocator, Val);
if (Bucket == getTombstoneVal())
--NumTombstones;
++NumItems;
assert(NumItems + NumTombstones <= NumBuckets);
// Fill in the bucket for the hash table. The FullHashValue was already
// filled in by LookupBucketFor.
Bucket = NewItem;
RehashTable();
return *NewItem;
}
MapEntryTy &GetOrCreateValue(StringRef Key) {
return GetOrCreateValue(Key, ValueTy());
}
/// remove - Remove the specified key/value pair from the map, but do not
/// erase it. This aborts if the key is not in the map.
void remove(MapEntryTy *KeyValue) {
RemoveKey(KeyValue);
}
void erase(iterator I) {
MapEntryTy &V = *I;
remove(&V);
V.Destroy(Allocator);
}
bool erase(StringRef Key) {
iterator I = find(Key);
if (I == end()) return false;
erase(I);
return true;
}
~StringMap() {
clear();
free(TheTable);
}
};
template<typename ValueTy>
class StringMapConstIterator {
protected:
StringMapEntryBase **Ptr;
public:
typedef StringMapEntry<ValueTy> value_type;
explicit StringMapConstIterator(StringMapEntryBase **Bucket,
bool NoAdvance = false)
: Ptr(Bucket) {
if (!NoAdvance) AdvancePastEmptyBuckets();
}
const value_type &operator*() const {
return *static_cast<StringMapEntry<ValueTy>*>(*Ptr);
}
const value_type *operator->() const {
return static_cast<StringMapEntry<ValueTy>*>(*Ptr);
}
bool operator==(const StringMapConstIterator &RHS) const {
return Ptr == RHS.Ptr;
}
bool operator!=(const StringMapConstIterator &RHS) const {
return Ptr != RHS.Ptr;
}
inline StringMapConstIterator& operator++() { // Preincrement
++Ptr;
AdvancePastEmptyBuckets();
return *this;
}
StringMapConstIterator operator++(int) { // Postincrement
StringMapConstIterator tmp = *this; ++*this; return tmp;
}
private:
void AdvancePastEmptyBuckets() {
while (*Ptr == 0 || *Ptr == StringMapImpl::getTombstoneVal())
++Ptr;
}
};
template<typename ValueTy>
class StringMapIterator : public StringMapConstIterator<ValueTy> {
public:
explicit StringMapIterator(StringMapEntryBase **Bucket,
bool NoAdvance = false)
: StringMapConstIterator<ValueTy>(Bucket, NoAdvance) {
}
StringMapEntry<ValueTy> &operator*() const {
return *static_cast<StringMapEntry<ValueTy>*>(*this->Ptr);
}
StringMapEntry<ValueTy> *operator->() const {
return static_cast<StringMapEntry<ValueTy>*>(*this->Ptr);
}
};
}
#endif

View File

@@ -0,0 +1,553 @@
//===--- StringRef.h - Constant String Reference Wrapper --------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_STRINGREF_H
#define LLVM_ADT_STRINGREF_H
#include "llvm/Support/type_traits.h"
#include <algorithm>
#include <cassert>
#include <cstring>
#include <limits>
#include <string>
#include <utility>
namespace llvm {
template<typename T>
class SmallVectorImpl;
class APInt;
class hash_code;
class StringRef;
/// Helper functions for StringRef::getAsInteger.
bool getAsUnsignedInteger(StringRef Str, unsigned Radix,
unsigned long long &Result);
bool getAsSignedInteger(StringRef Str, unsigned Radix, long long &Result);
/// StringRef - Represent a constant reference to a string, i.e. a character
/// array and a length, which need not be null terminated.
///
/// This class does not own the string data, it is expected to be used in
/// situations where the character data resides in some other buffer, whose
/// lifetime extends past that of the StringRef. For this reason, it is not in
/// general safe to store a StringRef.
class StringRef {
public:
typedef const char *iterator;
typedef const char *const_iterator;
static const size_t npos = ~size_t(0);
typedef size_t size_type;
private:
/// The start of the string, in an external buffer.
const char *Data;
/// The length of the string.
size_t Length;
// Workaround PR5482: nearly all gcc 4.x miscompile StringRef and std::min()
// Changing the arg of min to be an integer, instead of a reference to an
// integer works around this bug.
static size_t min(size_t a, size_t b) { return a < b ? a : b; }
static size_t max(size_t a, size_t b) { return a > b ? a : b; }
// Workaround memcmp issue with null pointers (undefined behavior)
// by providing a specialized version
static int compareMemory(const char *Lhs, const char *Rhs, size_t Length) {
if (Length == 0) { return 0; }
return ::memcmp(Lhs,Rhs,Length);
}
public:
/// @name Constructors
/// @{
/// Construct an empty string ref.
/*implicit*/ StringRef() : Data(0), Length(0) {}
/// Construct a string ref from a cstring.
/*implicit*/ StringRef(const char *Str)
: Data(Str) {
assert(Str && "StringRef cannot be built from a NULL argument");
Length = ::strlen(Str); // invoking strlen(NULL) is undefined behavior
}
/// Construct a string ref from a pointer and length.
/*implicit*/ StringRef(const char *data, size_t length)
: Data(data), Length(length) {
assert((data || length == 0) &&
"StringRef cannot be built from a NULL argument with non-null length");
}
/// Construct a string ref from an std::string.
/*implicit*/ StringRef(const std::string &Str)
: Data(Str.data()), Length(Str.length()) {}
/// @}
/// @name Iterators
/// @{
iterator begin() const { return Data; }
iterator end() const { return Data + Length; }
/// @}
/// @name String Operations
/// @{
/// data - Get a pointer to the start of the string (which may not be null
/// terminated).
const char *data() const { return Data; }
/// empty - Check if the string is empty.
bool empty() const { return Length == 0; }
/// size - Get the string size.
size_t size() const { return Length; }
/// front - Get the first character in the string.
char front() const {
assert(!empty());
return Data[0];
}
/// back - Get the last character in the string.
char back() const {
assert(!empty());
return Data[Length-1];
}
/// equals - Check for string equality, this is more efficient than
/// compare() when the relative ordering of inequal strings isn't needed.
bool equals(StringRef RHS) const {
return (Length == RHS.Length &&
compareMemory(Data, RHS.Data, RHS.Length) == 0);
}
/// equals_lower - Check for string equality, ignoring case.
bool equals_lower(StringRef RHS) const {
return Length == RHS.Length && compare_lower(RHS) == 0;
}
/// compare - Compare two strings; the result is -1, 0, or 1 if this string
/// is lexicographically less than, equal to, or greater than the \p RHS.
int compare(StringRef RHS) const {
// Check the prefix for a mismatch.
if (int Res = compareMemory(Data, RHS.Data, min(Length, RHS.Length)))
return Res < 0 ? -1 : 1;
// Otherwise the prefixes match, so we only need to check the lengths.
if (Length == RHS.Length)
return 0;
return Length < RHS.Length ? -1 : 1;
}
/// compare_lower - Compare two strings, ignoring case.
int compare_lower(StringRef RHS) const;
/// compare_numeric - Compare two strings, treating sequences of digits as
/// numbers.
int compare_numeric(StringRef RHS) const;
/// \brief Determine the edit distance between this string and another
/// string.
///
/// \param Other the string to compare this string against.
///
/// \param AllowReplacements whether to allow character
/// replacements (change one character into another) as a single
/// operation, rather than as two operations (an insertion and a
/// removal).
///
/// \param MaxEditDistance If non-zero, the maximum edit distance that
/// this routine is allowed to compute. If the edit distance will exceed
/// that maximum, returns \c MaxEditDistance+1.
///
/// \returns the minimum number of character insertions, removals,
/// or (if \p AllowReplacements is \c true) replacements needed to
/// transform one of the given strings into the other. If zero,
/// the strings are identical.
unsigned edit_distance(StringRef Other, bool AllowReplacements = true,
unsigned MaxEditDistance = 0);
/// str - Get the contents as an std::string.
std::string str() const {
if (Data == 0) return std::string();
return std::string(Data, Length);
}
/// @}
/// @name Operator Overloads
/// @{
char operator[](size_t Index) const {
assert(Index < Length && "Invalid index!");
return Data[Index];
}
/// @}
/// @name Type Conversions
/// @{
operator std::string() const {
return str();
}
/// @}
/// @name String Predicates
/// @{
/// Check if this string starts with the given \p Prefix.
bool startswith(StringRef Prefix) const {
return Length >= Prefix.Length &&
compareMemory(Data, Prefix.Data, Prefix.Length) == 0;
}
/// Check if this string ends with the given \p Suffix.
bool endswith(StringRef Suffix) const {
return Length >= Suffix.Length &&
compareMemory(end() - Suffix.Length, Suffix.Data, Suffix.Length) == 0;
}
/// @}
/// @name String Searching
/// @{
/// Search for the first character \p C in the string.
///
/// \returns The index of the first occurrence of \p C, or npos if not
/// found.
size_t find(char C, size_t From = 0) const {
for (size_t i = min(From, Length), e = Length; i != e; ++i)
if (Data[i] == C)
return i;
return npos;
}
/// Search for the first string \p Str in the string.
///
/// \returns The index of the first occurrence of \p Str, or npos if not
/// found.
size_t find(StringRef Str, size_t From = 0) const;
/// Search for the last character \p C in the string.
///
/// \returns The index of the last occurrence of \p C, or npos if not
/// found.
size_t rfind(char C, size_t From = npos) const {
From = min(From, Length);
size_t i = From;
while (i != 0) {
--i;
if (Data[i] == C)
return i;
}
return npos;
}
/// Search for the last string \p Str in the string.
///
/// \returns The index of the last occurrence of \p Str, or npos if not
/// found.
size_t rfind(StringRef Str) const;
/// Find the first character in the string that is \p C, or npos if not
/// found. Same as find.
size_type find_first_of(char C, size_t From = 0) const {
return find(C, From);
}
/// Find the first character in the string that is in \p Chars, or npos if
/// not found.
///
/// Complexity: O(size() + Chars.size())
size_type find_first_of(StringRef Chars, size_t From = 0) const;
/// Find the first character in the string that is not \p C or npos if not
/// found.
size_type find_first_not_of(char C, size_t From = 0) const;
/// Find the first character in the string that is not in the string
/// \p Chars, or npos if not found.
///
/// Complexity: O(size() + Chars.size())
size_type find_first_not_of(StringRef Chars, size_t From = 0) const;
/// Find the last character in the string that is \p C, or npos if not
/// found.
size_type find_last_of(char C, size_t From = npos) const {
return rfind(C, From);
}
/// Find the last character in the string that is in \p C, or npos if not
/// found.
///
/// Complexity: O(size() + Chars.size())
size_type find_last_of(StringRef Chars, size_t From = npos) const;
/// Find the last character in the string that is not \p C, or npos if not
/// found.
size_type find_last_not_of(char C, size_t From = npos) const;
/// Find the last character in the string that is not in \p Chars, or
/// npos if not found.
///
/// Complexity: O(size() + Chars.size())
size_type find_last_not_of(StringRef Chars, size_t From = npos) const;
/// @}
/// @name Helpful Algorithms
/// @{
/// Return the number of occurrences of \p C in the string.
size_t count(char C) const {
size_t Count = 0;
for (size_t i = 0, e = Length; i != e; ++i)
if (Data[i] == C)
++Count;
return Count;
}
/// Return the number of non-overlapped occurrences of \p Str in
/// the string.
size_t count(StringRef Str) const;
/// Parse the current string as an integer of the specified radix. If
/// \p Radix is specified as zero, this does radix autosensing using
/// extended C rules: 0 is octal, 0x is hex, 0b is binary.
///
/// If the string is invalid or if only a subset of the string is valid,
/// this returns true to signify the error. The string is considered
/// erroneous if empty or if it overflows T.
template <typename T>
typename enable_if_c<std::numeric_limits<T>::is_signed, bool>::type
getAsInteger(unsigned Radix, T &Result) const {
long long LLVal;
if (getAsSignedInteger(*this, Radix, LLVal) ||
static_cast<T>(LLVal) != LLVal)
return true;
Result = LLVal;
return false;
}
template <typename T>
typename enable_if_c<!std::numeric_limits<T>::is_signed, bool>::type
getAsInteger(unsigned Radix, T &Result) const {
unsigned long long ULLVal;
if (getAsUnsignedInteger(*this, Radix, ULLVal) ||
static_cast<T>(ULLVal) != ULLVal)
return true;
Result = ULLVal;
return false;
}
/// Parse the current string as an integer of the specified \p Radix, or of
/// an autosensed radix if the \p Radix given is 0. The current value in
/// \p Result is discarded, and the storage is changed to be wide enough to
/// store the parsed integer.
///
/// \returns true if the string does not solely consist of a valid
/// non-empty number in the appropriate base.
///
/// APInt::fromString is superficially similar but assumes the
/// string is well-formed in the given radix.
bool getAsInteger(unsigned Radix, APInt &Result) const;
/// @}
/// @name String Operations
/// @{
// Convert the given ASCII string to lowercase.
std::string lower() const;
/// Convert the given ASCII string to uppercase.
std::string upper() const;
/// @}
/// @name Substring Operations
/// @{
/// Return a reference to the substring from [Start, Start + N).
///
/// \param Start The index of the starting character in the substring; if
/// the index is npos or greater than the length of the string then the
/// empty substring will be returned.
///
/// \param N The number of characters to included in the substring. If N
/// exceeds the number of characters remaining in the string, the string
/// suffix (starting with \p Start) will be returned.
StringRef substr(size_t Start, size_t N = npos) const {
Start = min(Start, Length);
return StringRef(Data + Start, min(N, Length - Start));
}
/// Return a StringRef equal to 'this' but with the first \p N elements
/// dropped.
StringRef drop_front(unsigned N = 1) const {
assert(size() >= N && "Dropping more elements than exist");
return substr(N);
}
/// Return a StringRef equal to 'this' but with the last \p N elements
/// dropped.
StringRef drop_back(unsigned N = 1) const {
assert(size() >= N && "Dropping more elements than exist");
return substr(0, size()-N);
}
/// Return a reference to the substring from [Start, End).
///
/// \param Start The index of the starting character in the substring; if
/// the index is npos or greater than the length of the string then the
/// empty substring will be returned.
///
/// \param End The index following the last character to include in the
/// substring. If this is npos, or less than \p Start, or exceeds the
/// number of characters remaining in the string, the string suffix
/// (starting with \p Start) will be returned.
StringRef slice(size_t Start, size_t End) const {
Start = min(Start, Length);
End = min(max(Start, End), Length);
return StringRef(Data + Start, End - Start);
}
/// Split into two substrings around the first occurrence of a separator
/// character.
///
/// If \p Separator is in the string, then the result is a pair (LHS, RHS)
/// such that (*this == LHS + Separator + RHS) is true and RHS is
/// maximal. If \p Separator is not in the string, then the result is a
/// pair (LHS, RHS) where (*this == LHS) and (RHS == "").
///
/// \param Separator The character to split on.
/// \returns The split substrings.
std::pair<StringRef, StringRef> split(char Separator) const {
size_t Idx = find(Separator);
if (Idx == npos)
return std::make_pair(*this, StringRef());
return std::make_pair(slice(0, Idx), slice(Idx+1, npos));
}
/// Split into two substrings around the first occurrence of a separator
/// string.
///
/// If \p Separator is in the string, then the result is a pair (LHS, RHS)
/// such that (*this == LHS + Separator + RHS) is true and RHS is
/// maximal. If \p Separator is not in the string, then the result is a
/// pair (LHS, RHS) where (*this == LHS) and (RHS == "").
///
/// \param Separator - The string to split on.
/// \return - The split substrings.
std::pair<StringRef, StringRef> split(StringRef Separator) const {
size_t Idx = find(Separator);
if (Idx == npos)
return std::make_pair(*this, StringRef());
return std::make_pair(slice(0, Idx), slice(Idx + Separator.size(), npos));
}
/// Split into substrings around the occurrences of a separator string.
///
/// Each substring is stored in \p A. If \p MaxSplit is >= 0, at most
/// \p MaxSplit splits are done and consequently <= \p MaxSplit
/// elements are added to A.
/// If \p KeepEmpty is false, empty strings are not added to \p A. They
/// still count when considering \p MaxSplit
/// An useful invariant is that
/// Separator.join(A) == *this if MaxSplit == -1 and KeepEmpty == true
///
/// \param A - Where to put the substrings.
/// \param Separator - The string to split on.
/// \param MaxSplit - The maximum number of times the string is split.
/// \param KeepEmpty - True if empty substring should be added.
void split(SmallVectorImpl<StringRef> &A,
StringRef Separator, int MaxSplit = -1,
bool KeepEmpty = true) const;
/// Split into two substrings around the last occurrence of a separator
/// character.
///
/// If \p Separator is in the string, then the result is a pair (LHS, RHS)
/// such that (*this == LHS + Separator + RHS) is true and RHS is
/// minimal. If \p Separator is not in the string, then the result is a
/// pair (LHS, RHS) where (*this == LHS) and (RHS == "").
///
/// \param Separator - The character to split on.
/// \return - The split substrings.
std::pair<StringRef, StringRef> rsplit(char Separator) const {
size_t Idx = rfind(Separator);
if (Idx == npos)
return std::make_pair(*this, StringRef());
return std::make_pair(slice(0, Idx), slice(Idx+1, npos));
}
/// Return string with consecutive characters in \p Chars starting from
/// the left removed.
StringRef ltrim(StringRef Chars = " \t\n\v\f\r") const {
return drop_front(std::min(Length, find_first_not_of(Chars)));
}
/// Return string with consecutive characters in \p Chars starting from
/// the right removed.
StringRef rtrim(StringRef Chars = " \t\n\v\f\r") const {
return drop_back(Length - std::min(Length, find_last_not_of(Chars) + 1));
}
/// Return string with consecutive characters in \p Chars starting from
/// the left and right removed.
StringRef trim(StringRef Chars = " \t\n\v\f\r") const {
return ltrim(Chars).rtrim(Chars);
}
/// @}
};
/// @name StringRef Comparison Operators
/// @{
inline bool operator==(StringRef LHS, StringRef RHS) {
return LHS.equals(RHS);
}
inline bool operator!=(StringRef LHS, StringRef RHS) {
return !(LHS == RHS);
}
inline bool operator<(StringRef LHS, StringRef RHS) {
return LHS.compare(RHS) == -1;
}
inline bool operator<=(StringRef LHS, StringRef RHS) {
return LHS.compare(RHS) != 1;
}
inline bool operator>(StringRef LHS, StringRef RHS) {
return LHS.compare(RHS) == 1;
}
inline bool operator>=(StringRef LHS, StringRef RHS) {
return LHS.compare(RHS) != -1;
}
inline std::string &operator+=(std::string &buffer, StringRef string) {
return buffer.append(string.data(), string.size());
}
/// @}
/// \brief Compute a hash_code for a StringRef.
hash_code hash_value(StringRef S);
// StringRefs can be treated like a POD type.
template <typename T> struct isPodLike;
template <> struct isPodLike<StringRef> { static const bool value = true; };
}
#endif

View File

@@ -0,0 +1,45 @@
//===--- StringSet.h - The LLVM Compiler Driver -----------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open
// Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// StringSet - A set-like wrapper for the StringMap.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_STRINGSET_H
#define LLVM_ADT_STRINGSET_H
#include "llvm/ADT/StringMap.h"
namespace llvm {
/// StringSet - A wrapper for StringMap that provides set-like functionality.
template <class AllocatorTy = llvm::MallocAllocator>
class StringSet : public llvm::StringMap<char, AllocatorTy> {
typedef llvm::StringMap<char, AllocatorTy> base;
public:
/// insert - Insert the specified key into the set. If the key already
/// exists in the set, return false and ignore the request, otherwise insert
/// it and return true.
bool insert(StringRef Key) {
// Get or create the map entry for the key; if it doesn't exist the value
// type will be default constructed which we use to detect insert.
//
// We use '+' as the sentinel value in the map.
assert(!Key.empty());
StringMapEntry<char> &Entry = this->GetOrCreateValue(Key);
if (Entry.getValue() == '+')
return false;
Entry.setValue('+');
return true;
}
};
}
#endif // LLVM_ADT_STRINGSET_H

View File

@@ -0,0 +1,126 @@
//===--- StringSwitch.h - Switch-on-literal-string Construct --------------===/
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//===----------------------------------------------------------------------===/
//
// This file implements the StringSwitch template, which mimics a switch()
// statement whose cases are string literals.
//
//===----------------------------------------------------------------------===/
#ifndef LLVM_ADT_STRINGSWITCH_H
#define LLVM_ADT_STRINGSWITCH_H
#include "llvm/ADT/StringRef.h"
#include <cassert>
#include <cstring>
namespace llvm {
/// \brief A switch()-like statement whose cases are string literals.
///
/// The StringSwitch class is a simple form of a switch() statement that
/// determines whether the given string matches one of the given string
/// literals. The template type parameter \p T is the type of the value that
/// will be returned from the string-switch expression. For example,
/// the following code switches on the name of a color in \c argv[i]:
///
/// \code
/// Color color = StringSwitch<Color>(argv[i])
/// .Case("red", Red)
/// .Case("orange", Orange)
/// .Case("yellow", Yellow)
/// .Case("green", Green)
/// .Case("blue", Blue)
/// .Case("indigo", Indigo)
/// .Cases("violet", "purple", Violet)
/// .Default(UnknownColor);
/// \endcode
template<typename T, typename R = T>
class StringSwitch {
/// \brief The string we are matching.
StringRef Str;
/// \brief The pointer to the result of this switch statement, once known,
/// null before that.
const T *Result;
public:
explicit StringSwitch(StringRef S)
: Str(S), Result(0) { }
template<unsigned N>
StringSwitch& Case(const char (&S)[N], const T& Value) {
if (!Result && N-1 == Str.size() &&
(std::memcmp(S, Str.data(), N-1) == 0)) {
Result = &Value;
}
return *this;
}
template<unsigned N>
StringSwitch& EndsWith(const char (&S)[N], const T &Value) {
if (!Result && Str.size() >= N-1 &&
std::memcmp(S, Str.data() + Str.size() + 1 - N, N-1) == 0) {
Result = &Value;
}
return *this;
}
template<unsigned N>
StringSwitch& StartsWith(const char (&S)[N], const T &Value) {
if (!Result && Str.size() >= N-1 &&
std::memcmp(S, Str.data(), N-1) == 0) {
Result = &Value;
}
return *this;
}
template<unsigned N0, unsigned N1>
StringSwitch& Cases(const char (&S0)[N0], const char (&S1)[N1],
const T& Value) {
return Case(S0, Value).Case(S1, Value);
}
template<unsigned N0, unsigned N1, unsigned N2>
StringSwitch& Cases(const char (&S0)[N0], const char (&S1)[N1],
const char (&S2)[N2], const T& Value) {
return Case(S0, Value).Case(S1, Value).Case(S2, Value);
}
template<unsigned N0, unsigned N1, unsigned N2, unsigned N3>
StringSwitch& Cases(const char (&S0)[N0], const char (&S1)[N1],
const char (&S2)[N2], const char (&S3)[N3],
const T& Value) {
return Case(S0, Value).Case(S1, Value).Case(S2, Value).Case(S3, Value);
}
template<unsigned N0, unsigned N1, unsigned N2, unsigned N3, unsigned N4>
StringSwitch& Cases(const char (&S0)[N0], const char (&S1)[N1],
const char (&S2)[N2], const char (&S3)[N3],
const char (&S4)[N4], const T& Value) {
return Case(S0, Value).Case(S1, Value).Case(S2, Value).Case(S3, Value)
.Case(S4, Value);
}
R Default(const T& Value) const {
if (Result)
return *Result;
return Value;
}
operator R() const {
assert(Result && "Fell off the end of a string-switch");
return *Result;
}
};
} // end namespace llvm
#endif // LLVM_ADT_STRINGSWITCH_H

View File

@@ -0,0 +1,291 @@
//===- llvm/ADT/TinyPtrVector.h - 'Normally tiny' vectors -------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_TINYPTRVECTOR_H
#define LLVM_ADT_TINYPTRVECTOR_H
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/PointerUnion.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Compiler.h"
namespace llvm {
/// TinyPtrVector - This class is specialized for cases where there are
/// normally 0 or 1 element in a vector, but is general enough to go beyond that
/// when required.
///
/// NOTE: This container doesn't allow you to store a null pointer into it.
///
template <typename EltTy>
class TinyPtrVector {
public:
typedef llvm::SmallVector<EltTy, 4> VecTy;
typedef typename VecTy::value_type value_type;
llvm::PointerUnion<EltTy, VecTy*> Val;
TinyPtrVector() {}
~TinyPtrVector() {
if (VecTy *V = Val.template dyn_cast<VecTy*>())
delete V;
}
TinyPtrVector(const TinyPtrVector &RHS) : Val(RHS.Val) {
if (VecTy *V = Val.template dyn_cast<VecTy*>())
Val = new VecTy(*V);
}
TinyPtrVector &operator=(const TinyPtrVector &RHS) {
if (this == &RHS)
return *this;
if (RHS.empty()) {
this->clear();
return *this;
}
// Try to squeeze into the single slot. If it won't fit, allocate a copied
// vector.
if (Val.template is<EltTy>()) {
if (RHS.size() == 1)
Val = RHS.front();
else
Val = new VecTy(*RHS.Val.template get<VecTy*>());
return *this;
}
// If we have a full vector allocated, try to re-use it.
if (RHS.Val.template is<EltTy>()) {
Val.template get<VecTy*>()->clear();
Val.template get<VecTy*>()->push_back(RHS.front());
} else {
*Val.template get<VecTy*>() = *RHS.Val.template get<VecTy*>();
}
return *this;
}
#if LLVM_HAS_RVALUE_REFERENCES
TinyPtrVector(TinyPtrVector &&RHS) : Val(RHS.Val) {
RHS.Val = (EltTy)0;
}
TinyPtrVector &operator=(TinyPtrVector &&RHS) {
if (this == &RHS)
return *this;
if (RHS.empty()) {
this->clear();
return *this;
}
// If this vector has been allocated on the heap, re-use it if cheap. If it
// would require more copying, just delete it and we'll steal the other
// side.
if (VecTy *V = Val.template dyn_cast<VecTy*>()) {
if (RHS.Val.template is<EltTy>()) {
V->clear();
V->push_back(RHS.front());
return *this;
}
delete V;
}
Val = RHS.Val;
RHS.Val = (EltTy)0;
return *this;
}
#endif
// implicit conversion operator to ArrayRef.
operator ArrayRef<EltTy>() const {
if (Val.isNull())
return ArrayRef<EltTy>();
if (Val.template is<EltTy>())
return *Val.getAddrOfPtr1();
return *Val.template get<VecTy*>();
}
bool empty() const {
// This vector can be empty if it contains no element, or if it
// contains a pointer to an empty vector.
if (Val.isNull()) return true;
if (VecTy *Vec = Val.template dyn_cast<VecTy*>())
return Vec->empty();
return false;
}
unsigned size() const {
if (empty())
return 0;
if (Val.template is<EltTy>())
return 1;
return Val.template get<VecTy*>()->size();
}
typedef const EltTy *const_iterator;
typedef EltTy *iterator;
iterator begin() {
if (Val.template is<EltTy>())
return Val.getAddrOfPtr1();
return Val.template get<VecTy *>()->begin();
}
iterator end() {
if (Val.template is<EltTy>())
return begin() + (Val.isNull() ? 0 : 1);
return Val.template get<VecTy *>()->end();
}
const_iterator begin() const {
return (const_iterator)const_cast<TinyPtrVector*>(this)->begin();
}
const_iterator end() const {
return (const_iterator)const_cast<TinyPtrVector*>(this)->end();
}
EltTy operator[](unsigned i) const {
assert(!Val.isNull() && "can't index into an empty vector");
if (EltTy V = Val.template dyn_cast<EltTy>()) {
assert(i == 0 && "tinyvector index out of range");
return V;
}
assert(i < Val.template get<VecTy*>()->size() &&
"tinyvector index out of range");
return (*Val.template get<VecTy*>())[i];
}
EltTy front() const {
assert(!empty() && "vector empty");
if (EltTy V = Val.template dyn_cast<EltTy>())
return V;
return Val.template get<VecTy*>()->front();
}
EltTy back() const {
assert(!empty() && "vector empty");
if (EltTy V = Val.template dyn_cast<EltTy>())
return V;
return Val.template get<VecTy*>()->back();
}
void push_back(EltTy NewVal) {
assert(NewVal != 0 && "Can't add a null value");
// If we have nothing, add something.
if (Val.isNull()) {
Val = NewVal;
return;
}
// If we have a single value, convert to a vector.
if (EltTy V = Val.template dyn_cast<EltTy>()) {
Val = new VecTy();
Val.template get<VecTy*>()->push_back(V);
}
// Add the new value, we know we have a vector.
Val.template get<VecTy*>()->push_back(NewVal);
}
void pop_back() {
// If we have a single value, convert to empty.
if (Val.template is<EltTy>())
Val = (EltTy)0;
else if (VecTy *Vec = Val.template get<VecTy*>())
Vec->pop_back();
}
void clear() {
// If we have a single value, convert to empty.
if (Val.template is<EltTy>()) {
Val = (EltTy)0;
} else if (VecTy *Vec = Val.template dyn_cast<VecTy*>()) {
// If we have a vector form, just clear it.
Vec->clear();
}
// Otherwise, we're already empty.
}
iterator erase(iterator I) {
assert(I >= begin() && "Iterator to erase is out of bounds.");
assert(I < end() && "Erasing at past-the-end iterator.");
// If we have a single value, convert to empty.
if (Val.template is<EltTy>()) {
if (I == begin())
Val = (EltTy)0;
} else if (VecTy *Vec = Val.template dyn_cast<VecTy*>()) {
// multiple items in a vector; just do the erase, there is no
// benefit to collapsing back to a pointer
return Vec->erase(I);
}
return end();
}
iterator erase(iterator S, iterator E) {
assert(S >= begin() && "Range to erase is out of bounds.");
assert(S <= E && "Trying to erase invalid range.");
assert(E <= end() && "Trying to erase past the end.");
if (Val.template is<EltTy>()) {
if (S == begin() && S != E)
Val = (EltTy)0;
} else if (VecTy *Vec = Val.template dyn_cast<VecTy*>()) {
return Vec->erase(S, E);
}
return end();
}
iterator insert(iterator I, const EltTy &Elt) {
assert(I >= this->begin() && "Insertion iterator is out of bounds.");
assert(I <= this->end() && "Inserting past the end of the vector.");
if (I == end()) {
push_back(Elt);
return llvm::prior(end());
}
assert(!Val.isNull() && "Null value with non-end insert iterator.");
if (EltTy V = Val.template dyn_cast<EltTy>()) {
assert(I == begin());
Val = Elt;
push_back(V);
return begin();
}
return Val.template get<VecTy*>()->insert(I, Elt);
}
template<typename ItTy>
iterator insert(iterator I, ItTy From, ItTy To) {
assert(I >= this->begin() && "Insertion iterator is out of bounds.");
assert(I <= this->end() && "Inserting past the end of the vector.");
if (From == To)
return I;
// If we have a single value, convert to a vector.
ptrdiff_t Offset = I - begin();
if (Val.isNull()) {
if (llvm::next(From) == To) {
Val = *From;
return begin();
}
Val = new VecTy();
} else if (EltTy V = Val.template dyn_cast<EltTy>()) {
Val = new VecTy();
Val.template get<VecTy*>()->push_back(V);
}
return Val.template get<VecTy*>()->insert(begin() + Offset, From, To);
}
};
} // end namespace llvm
#endif

View File

@@ -0,0 +1,447 @@
//===-- llvm/ADT/Triple.h - Target triple helper class ----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_TRIPLE_H
#define LLVM_ADT_TRIPLE_H
#include "llvm/ADT/Twine.h"
// Some system headers or GCC predefined macros conflict with identifiers in
// this file. Undefine them here.
#undef mips
#undef sparc
namespace llvm {
/// Triple - Helper class for working with target triples.
///
/// Target triples are strings in the canonical form:
/// ARCHITECTURE-VENDOR-OPERATING_SYSTEM
/// or
/// ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
///
/// This class is used for clients which want to support arbitrary
/// target triples, but also want to implement certain special
/// behavior for particular targets. This class isolates the mapping
/// from the components of the target triple to well known IDs.
///
/// At its core the Triple class is designed to be a wrapper for a triple
/// string; the constructor does not change or normalize the triple string.
/// Clients that need to handle the non-canonical triples that users often
/// specify should use the normalize method.
///
/// See autoconf/config.guess for a glimpse into what triples look like in
/// practice.
class Triple {
public:
enum ArchType {
UnknownArch,
arm, // ARM: arm, armv.*, xscale
aarch64, // AArch64: aarch64
hexagon, // Hexagon: hexagon
mips, // MIPS: mips, mipsallegrex
mipsel, // MIPSEL: mipsel, mipsallegrexel
mips64, // MIPS64: mips64
mips64el,// MIPS64EL: mips64el
msp430, // MSP430: msp430
ppc, // PPC: powerpc
ppc64, // PPC64: powerpc64, ppu
r600, // R600: AMD GPUs HD2XXX - HD6XXX
sparc, // Sparc: sparc
sparcv9, // Sparcv9: Sparcv9
tce, // TCE (http://tce.cs.tut.fi/): tce
thumb, // Thumb: thumb, thumbv.*
x86, // X86: i[3-9]86
x86_64, // X86-64: amd64, x86_64
xcore, // XCore: xcore
mblaze, // MBlaze: mblaze
nvptx, // NVPTX: 32-bit
nvptx64, // NVPTX: 64-bit
le32, // le32: generic little-endian 32-bit CPU (PNaCl / Emscripten)
amdil, // amdil: amd IL
spir, // SPIR: standard portable IR for OpenCL 32-bit version
spir64 // SPIR: standard portable IR for OpenCL 64-bit version
};
enum VendorType {
UnknownVendor,
Apple,
PC,
SCEI,
BGP,
BGQ,
Freescale,
IBM
};
enum OSType {
UnknownOS,
AuroraUX,
Cygwin,
Darwin,
DragonFly,
FreeBSD,
IOS,
KFreeBSD,
Linux,
Lv2, // PS3
MacOSX,
MinGW32, // i*86-pc-mingw32, *-w64-mingw32
NetBSD,
OpenBSD,
Solaris,
Win32,
Haiku,
Minix,
RTEMS,
NaCl, // Native Client
CNK, // BG/P Compute-Node Kernel
Bitrig,
AIX
};
enum EnvironmentType {
UnknownEnvironment,
GNU,
GNUEABI,
GNUEABIHF,
GNUX32,
EABI,
MachO,
Android,
ELF
};
private:
std::string Data;
/// The parsed arch type.
ArchType Arch;
/// The parsed vendor type.
VendorType Vendor;
/// The parsed OS type.
OSType OS;
/// The parsed Environment type.
EnvironmentType Environment;
public:
/// @name Constructors
/// @{
/// \brief Default constructor is the same as an empty string and leaves all
/// triple fields unknown.
Triple() : Data(), Arch(), Vendor(), OS(), Environment() {}
explicit Triple(const Twine &Str);
Triple(const Twine &ArchStr, const Twine &VendorStr, const Twine &OSStr);
Triple(const Twine &ArchStr, const Twine &VendorStr, const Twine &OSStr,
const Twine &EnvironmentStr);
/// @}
/// @name Normalization
/// @{
/// normalize - Turn an arbitrary machine specification into the canonical
/// triple form (or something sensible that the Triple class understands if
/// nothing better can reasonably be done). In particular, it handles the
/// common case in which otherwise valid components are in the wrong order.
static std::string normalize(StringRef Str);
/// @}
/// @name Typed Component Access
/// @{
/// getArch - Get the parsed architecture type of this triple.
ArchType getArch() const { return Arch; }
/// getVendor - Get the parsed vendor type of this triple.
VendorType getVendor() const { return Vendor; }
/// getOS - Get the parsed operating system type of this triple.
OSType getOS() const { return OS; }
/// hasEnvironment - Does this triple have the optional environment
/// (fourth) component?
bool hasEnvironment() const {
return getEnvironmentName() != "";
}
/// getEnvironment - Get the parsed environment type of this triple.
EnvironmentType getEnvironment() const { return Environment; }
/// getOSVersion - Parse the version number from the OS name component of the
/// triple, if present.
///
/// For example, "fooos1.2.3" would return (1, 2, 3).
///
/// If an entry is not defined, it will be returned as 0.
void getOSVersion(unsigned &Major, unsigned &Minor, unsigned &Micro) const;
/// getOSMajorVersion - Return just the major version number, this is
/// specialized because it is a common query.
unsigned getOSMajorVersion() const {
unsigned Maj, Min, Micro;
getOSVersion(Maj, Min, Micro);
return Maj;
}
/// getMacOSXVersion - Parse the version number as with getOSVersion and then
/// translate generic "darwin" versions to the corresponding OS X versions.
/// This may also be called with IOS triples but the OS X version number is
/// just set to a constant 10.4.0 in that case. Returns true if successful.
bool getMacOSXVersion(unsigned &Major, unsigned &Minor,
unsigned &Micro) const;
/// getiOSVersion - Parse the version number as with getOSVersion. This should
/// only be called with IOS triples.
void getiOSVersion(unsigned &Major, unsigned &Minor,
unsigned &Micro) const;
/// @}
/// @name Direct Component Access
/// @{
const std::string &str() const { return Data; }
const std::string &getTriple() const { return Data; }
/// getArchName - Get the architecture (first) component of the
/// triple.
StringRef getArchName() const;
/// getVendorName - Get the vendor (second) component of the triple.
StringRef getVendorName() const;
/// getOSName - Get the operating system (third) component of the
/// triple.
StringRef getOSName() const;
/// getEnvironmentName - Get the optional environment (fourth)
/// component of the triple, or "" if empty.
StringRef getEnvironmentName() const;
/// getOSAndEnvironmentName - Get the operating system and optional
/// environment components as a single string (separated by a '-'
/// if the environment component is present).
StringRef getOSAndEnvironmentName() const;
/// @}
/// @name Convenience Predicates
/// @{
/// \brief Test whether the architecture is 64-bit
///
/// Note that this tests for 64-bit pointer width, and nothing else. Note
/// that we intentionally expose only three predicates, 64-bit, 32-bit, and
/// 16-bit. The inner details of pointer width for particular architectures
/// is not summed up in the triple, and so only a coarse grained predicate
/// system is provided.
bool isArch64Bit() const;
/// \brief Test whether the architecture is 32-bit
///
/// Note that this tests for 32-bit pointer width, and nothing else.
bool isArch32Bit() const;
/// \brief Test whether the architecture is 16-bit
///
/// Note that this tests for 16-bit pointer width, and nothing else.
bool isArch16Bit() const;
/// isOSVersionLT - Helper function for doing comparisons against version
/// numbers included in the target triple.
bool isOSVersionLT(unsigned Major, unsigned Minor = 0,
unsigned Micro = 0) const {
unsigned LHS[3];
getOSVersion(LHS[0], LHS[1], LHS[2]);
if (LHS[0] != Major)
return LHS[0] < Major;
if (LHS[1] != Minor)
return LHS[1] < Minor;
if (LHS[2] != Micro)
return LHS[1] < Micro;
return false;
}
/// isMacOSXVersionLT - Comparison function for checking OS X version
/// compatibility, which handles supporting skewed version numbering schemes
/// used by the "darwin" triples.
unsigned isMacOSXVersionLT(unsigned Major, unsigned Minor = 0,
unsigned Micro = 0) const {
assert(isMacOSX() && "Not an OS X triple!");
// If this is OS X, expect a sane version number.
if (getOS() == Triple::MacOSX)
return isOSVersionLT(Major, Minor, Micro);
// Otherwise, compare to the "Darwin" number.
assert(Major == 10 && "Unexpected major version");
return isOSVersionLT(Minor + 4, Micro, 0);
}
/// isMacOSX - Is this a Mac OS X triple. For legacy reasons, we support both
/// "darwin" and "osx" as OS X triples.
bool isMacOSX() const {
return getOS() == Triple::Darwin || getOS() == Triple::MacOSX;
}
/// Is this an iOS triple.
bool isiOS() const {
return getOS() == Triple::IOS;
}
/// isOSDarwin - Is this a "Darwin" OS (OS X or iOS).
bool isOSDarwin() const {
return isMacOSX() || isiOS();
}
/// \brief Tests for either Cygwin or MinGW OS
bool isOSCygMing() const {
return getOS() == Triple::Cygwin || getOS() == Triple::MinGW32;
}
/// isOSWindows - Is this a "Windows" OS.
bool isOSWindows() const {
return getOS() == Triple::Win32 || isOSCygMing();
}
/// \brief Tests whether the OS is NaCl (Native Client)
bool isOSNaCl() const {
return getOS() == Triple::NaCl;
}
/// \brief Tests whether the OS uses the ELF binary format.
bool isOSBinFormatELF() const {
return !isOSDarwin() && !isOSWindows();
}
/// \brief Tests whether the OS uses the COFF binary format.
bool isOSBinFormatCOFF() const {
return isOSWindows();
}
/// \brief Tests whether the environment is MachO.
// FIXME: Should this be an OSBinFormat predicate?
bool isEnvironmentMachO() const {
return getEnvironment() == Triple::MachO || isOSDarwin();
}
/// @}
/// @name Mutators
/// @{
/// setArch - Set the architecture (first) component of the triple
/// to a known type.
void setArch(ArchType Kind);
/// setVendor - Set the vendor (second) component of the triple to a
/// known type.
void setVendor(VendorType Kind);
/// setOS - Set the operating system (third) component of the triple
/// to a known type.
void setOS(OSType Kind);
/// setEnvironment - Set the environment (fourth) component of the triple
/// to a known type.
void setEnvironment(EnvironmentType Kind);
/// setTriple - Set all components to the new triple \p Str.
void setTriple(const Twine &Str);
/// setArchName - Set the architecture (first) component of the
/// triple by name.
void setArchName(StringRef Str);
/// setVendorName - Set the vendor (second) component of the triple
/// by name.
void setVendorName(StringRef Str);
/// setOSName - Set the operating system (third) component of the
/// triple by name.
void setOSName(StringRef Str);
/// setEnvironmentName - Set the optional environment (fourth)
/// component of the triple by name.
void setEnvironmentName(StringRef Str);
/// setOSAndEnvironmentName - Set the operating system and optional
/// environment components with a single string.
void setOSAndEnvironmentName(StringRef Str);
/// getArchNameForAssembler - Get an architecture name that is understood by
/// the target assembler.
const char *getArchNameForAssembler();
/// @}
/// @name Helpers to build variants of a particular triple.
/// @{
/// \brief Form a triple with a 32-bit variant of the current architecture.
///
/// This can be used to move across "families" of architectures where useful.
///
/// \returns A new triple with a 32-bit architecture or an unknown
/// architecture if no such variant can be found.
llvm::Triple get32BitArchVariant() const;
/// \brief Form a triple with a 64-bit variant of the current architecture.
///
/// This can be used to move across "families" of architectures where useful.
///
/// \returns A new triple with a 64-bit architecture or an unknown
/// architecture if no such variant can be found.
llvm::Triple get64BitArchVariant() const;
/// @}
/// @name Static helpers for IDs.
/// @{
/// getArchTypeName - Get the canonical name for the \p Kind architecture.
static const char *getArchTypeName(ArchType Kind);
/// getArchTypePrefix - Get the "prefix" canonical name for the \p Kind
/// architecture. This is the prefix used by the architecture specific
/// builtins, and is suitable for passing to \see
/// Intrinsic::getIntrinsicForGCCBuiltin().
///
/// \return - The architecture prefix, or 0 if none is defined.
static const char *getArchTypePrefix(ArchType Kind);
/// getVendorTypeName - Get the canonical name for the \p Kind vendor.
static const char *getVendorTypeName(VendorType Kind);
/// getOSTypeName - Get the canonical name for the \p Kind operating system.
static const char *getOSTypeName(OSType Kind);
/// getEnvironmentTypeName - Get the canonical name for the \p Kind
/// environment.
static const char *getEnvironmentTypeName(EnvironmentType Kind);
/// @}
/// @name Static helpers for converting alternate architecture names.
/// @{
/// getArchTypeForLLVMName - The canonical type for the given LLVM
/// architecture name (e.g., "x86").
static ArchType getArchTypeForLLVMName(StringRef Str);
/// @}
};
} // End llvm namespace
#endif

View File

@@ -0,0 +1,524 @@
//===-- Twine.h - Fast Temporary String Concatenation -----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_TWINE_H
#define LLVM_ADT_TWINE_H
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/Support/ErrorHandling.h"
#include <cassert>
#include <string>
namespace llvm {
template <typename T>
class SmallVectorImpl;
class StringRef;
class raw_ostream;
/// Twine - A lightweight data structure for efficiently representing the
/// concatenation of temporary values as strings.
///
/// A Twine is a kind of rope, it represents a concatenated string using a
/// binary-tree, where the string is the preorder of the nodes. Since the
/// Twine can be efficiently rendered into a buffer when its result is used,
/// it avoids the cost of generating temporary values for intermediate string
/// results -- particularly in cases when the Twine result is never
/// required. By explicitly tracking the type of leaf nodes, we can also avoid
/// the creation of temporary strings for conversions operations (such as
/// appending an integer to a string).
///
/// A Twine is not intended for use directly and should not be stored, its
/// implementation relies on the ability to store pointers to temporary stack
/// objects which may be deallocated at the end of a statement. Twines should
/// only be used accepted as const references in arguments, when an API wishes
/// to accept possibly-concatenated strings.
///
/// Twines support a special 'null' value, which always concatenates to form
/// itself, and renders as an empty string. This can be returned from APIs to
/// effectively nullify any concatenations performed on the result.
///
/// \b Implementation
///
/// Given the nature of a Twine, it is not possible for the Twine's
/// concatenation method to construct interior nodes; the result must be
/// represented inside the returned value. For this reason a Twine object
/// actually holds two values, the left- and right-hand sides of a
/// concatenation. We also have nullary Twine objects, which are effectively
/// sentinel values that represent empty strings.
///
/// Thus, a Twine can effectively have zero, one, or two children. The \see
/// isNullary(), \see isUnary(), and \see isBinary() predicates exist for
/// testing the number of children.
///
/// We maintain a number of invariants on Twine objects (FIXME: Why):
/// - Nullary twines are always represented with their Kind on the left-hand
/// side, and the Empty kind on the right-hand side.
/// - Unary twines are always represented with the value on the left-hand
/// side, and the Empty kind on the right-hand side.
/// - If a Twine has another Twine as a child, that child should always be
/// binary (otherwise it could have been folded into the parent).
///
/// These invariants are check by \see isValid().
///
/// \b Efficiency Considerations
///
/// The Twine is designed to yield efficient and small code for common
/// situations. For this reason, the concat() method is inlined so that
/// concatenations of leaf nodes can be optimized into stores directly into a
/// single stack allocated object.
///
/// In practice, not all compilers can be trusted to optimize concat() fully,
/// so we provide two additional methods (and accompanying operator+
/// overloads) to guarantee that particularly important cases (cstring plus
/// StringRef) codegen as desired.
class Twine {
/// NodeKind - Represent the type of an argument.
enum NodeKind {
/// An empty string; the result of concatenating anything with it is also
/// empty.
NullKind,
/// The empty string.
EmptyKind,
/// A pointer to a Twine instance.
TwineKind,
/// A pointer to a C string instance.
CStringKind,
/// A pointer to an std::string instance.
StdStringKind,
/// A pointer to a StringRef instance.
StringRefKind,
/// A char value reinterpreted as a pointer, to render as a character.
CharKind,
/// An unsigned int value reinterpreted as a pointer, to render as an
/// unsigned decimal integer.
DecUIKind,
/// An int value reinterpreted as a pointer, to render as a signed
/// decimal integer.
DecIKind,
/// A pointer to an unsigned long value, to render as an unsigned decimal
/// integer.
DecULKind,
/// A pointer to a long value, to render as a signed decimal integer.
DecLKind,
/// A pointer to an unsigned long long value, to render as an unsigned
/// decimal integer.
DecULLKind,
/// A pointer to a long long value, to render as a signed decimal integer.
DecLLKind,
/// A pointer to a uint64_t value, to render as an unsigned hexadecimal
/// integer.
UHexKind
};
union Child
{
const Twine *twine;
const char *cString;
const std::string *stdString;
const StringRef *stringRef;
char character;
unsigned int decUI;
int decI;
const unsigned long *decUL;
const long *decL;
const unsigned long long *decULL;
const long long *decLL;
const uint64_t *uHex;
};
private:
/// LHS - The prefix in the concatenation, which may be uninitialized for
/// Null or Empty kinds.
Child LHS;
/// RHS - The suffix in the concatenation, which may be uninitialized for
/// Null or Empty kinds.
Child RHS;
// enums stored as unsigned chars to save on space while some compilers
// don't support specifying the backing type for an enum
/// LHSKind - The NodeKind of the left hand side, \see getLHSKind().
unsigned char LHSKind;
/// RHSKind - The NodeKind of the left hand side, \see getLHSKind().
unsigned char RHSKind;
private:
/// Construct a nullary twine; the kind must be NullKind or EmptyKind.
explicit Twine(NodeKind Kind)
: LHSKind(Kind), RHSKind(EmptyKind) {
assert(isNullary() && "Invalid kind!");
}
/// Construct a binary twine.
explicit Twine(const Twine &_LHS, const Twine &_RHS)
: LHSKind(TwineKind), RHSKind(TwineKind) {
LHS.twine = &_LHS;
RHS.twine = &_RHS;
assert(isValid() && "Invalid twine!");
}
/// Construct a twine from explicit values.
explicit Twine(Child _LHS, NodeKind _LHSKind,
Child _RHS, NodeKind _RHSKind)
: LHS(_LHS), RHS(_RHS), LHSKind(_LHSKind), RHSKind(_RHSKind) {
assert(isValid() && "Invalid twine!");
}
/// isNull - Check for the null twine.
bool isNull() const {
return getLHSKind() == NullKind;
}
/// isEmpty - Check for the empty twine.
bool isEmpty() const {
return getLHSKind() == EmptyKind;
}
/// isNullary - Check if this is a nullary twine (null or empty).
bool isNullary() const {
return isNull() || isEmpty();
}
/// isUnary - Check if this is a unary twine.
bool isUnary() const {
return getRHSKind() == EmptyKind && !isNullary();
}
/// isBinary - Check if this is a binary twine.
bool isBinary() const {
return getLHSKind() != NullKind && getRHSKind() != EmptyKind;
}
/// isValid - Check if this is a valid twine (satisfying the invariants on
/// order and number of arguments).
bool isValid() const {
// Nullary twines always have Empty on the RHS.
if (isNullary() && getRHSKind() != EmptyKind)
return false;
// Null should never appear on the RHS.
if (getRHSKind() == NullKind)
return false;
// The RHS cannot be non-empty if the LHS is empty.
if (getRHSKind() != EmptyKind && getLHSKind() == EmptyKind)
return false;
// A twine child should always be binary.
if (getLHSKind() == TwineKind &&
!LHS.twine->isBinary())
return false;
if (getRHSKind() == TwineKind &&
!RHS.twine->isBinary())
return false;
return true;
}
/// getLHSKind - Get the NodeKind of the left-hand side.
NodeKind getLHSKind() const { return (NodeKind) LHSKind; }
/// getRHSKind - Get the NodeKind of the right-hand side.
NodeKind getRHSKind() const { return (NodeKind) RHSKind; }
/// printOneChild - Print one child from a twine.
void printOneChild(raw_ostream &OS, Child Ptr, NodeKind Kind) const;
/// printOneChildRepr - Print the representation of one child from a twine.
void printOneChildRepr(raw_ostream &OS, Child Ptr,
NodeKind Kind) const;
public:
/// @name Constructors
/// @{
/// Construct from an empty string.
/*implicit*/ Twine() : LHSKind(EmptyKind), RHSKind(EmptyKind) {
assert(isValid() && "Invalid twine!");
}
/// Construct from a C string.
///
/// We take care here to optimize "" into the empty twine -- this will be
/// optimized out for string constants. This allows Twine arguments have
/// default "" values, without introducing unnecessary string constants.
/*implicit*/ Twine(const char *Str)
: RHSKind(EmptyKind) {
if (Str[0] != '\0') {
LHS.cString = Str;
LHSKind = CStringKind;
} else
LHSKind = EmptyKind;
assert(isValid() && "Invalid twine!");
}
/// Construct from an std::string.
/*implicit*/ Twine(const std::string &Str)
: LHSKind(StdStringKind), RHSKind(EmptyKind) {
LHS.stdString = &Str;
assert(isValid() && "Invalid twine!");
}
/// Construct from a StringRef.
/*implicit*/ Twine(const StringRef &Str)
: LHSKind(StringRefKind), RHSKind(EmptyKind) {
LHS.stringRef = &Str;
assert(isValid() && "Invalid twine!");
}
/// Construct from a char.
explicit Twine(char Val)
: LHSKind(CharKind), RHSKind(EmptyKind) {
LHS.character = Val;
}
/// Construct from a signed char.
explicit Twine(signed char Val)
: LHSKind(CharKind), RHSKind(EmptyKind) {
LHS.character = static_cast<char>(Val);
}
/// Construct from an unsigned char.
explicit Twine(unsigned char Val)
: LHSKind(CharKind), RHSKind(EmptyKind) {
LHS.character = static_cast<char>(Val);
}
/// Construct a twine to print \p Val as an unsigned decimal integer.
explicit Twine(unsigned Val)
: LHSKind(DecUIKind), RHSKind(EmptyKind) {
LHS.decUI = Val;
}
/// Construct a twine to print \p Val as a signed decimal integer.
explicit Twine(int Val)
: LHSKind(DecIKind), RHSKind(EmptyKind) {
LHS.decI = Val;
}
/// Construct a twine to print \p Val as an unsigned decimal integer.
explicit Twine(const unsigned long &Val)
: LHSKind(DecULKind), RHSKind(EmptyKind) {
LHS.decUL = &Val;
}
/// Construct a twine to print \p Val as a signed decimal integer.
explicit Twine(const long &Val)
: LHSKind(DecLKind), RHSKind(EmptyKind) {
LHS.decL = &Val;
}
/// Construct a twine to print \p Val as an unsigned decimal integer.
explicit Twine(const unsigned long long &Val)
: LHSKind(DecULLKind), RHSKind(EmptyKind) {
LHS.decULL = &Val;
}
/// Construct a twine to print \p Val as a signed decimal integer.
explicit Twine(const long long &Val)
: LHSKind(DecLLKind), RHSKind(EmptyKind) {
LHS.decLL = &Val;
}
// FIXME: Unfortunately, to make sure this is as efficient as possible we
// need extra binary constructors from particular types. We can't rely on
// the compiler to be smart enough to fold operator+()/concat() down to the
// right thing. Yet.
/// Construct as the concatenation of a C string and a StringRef.
/*implicit*/ Twine(const char *_LHS, const StringRef &_RHS)
: LHSKind(CStringKind), RHSKind(StringRefKind) {
LHS.cString = _LHS;
RHS.stringRef = &_RHS;
assert(isValid() && "Invalid twine!");
}
/// Construct as the concatenation of a StringRef and a C string.
/*implicit*/ Twine(const StringRef &_LHS, const char *_RHS)
: LHSKind(StringRefKind), RHSKind(CStringKind) {
LHS.stringRef = &_LHS;
RHS.cString = _RHS;
assert(isValid() && "Invalid twine!");
}
/// Create a 'null' string, which is an empty string that always
/// concatenates to form another empty string.
static Twine createNull() {
return Twine(NullKind);
}
/// @}
/// @name Numeric Conversions
/// @{
// Construct a twine to print \p Val as an unsigned hexadecimal integer.
static Twine utohexstr(const uint64_t &Val) {
Child LHS, RHS;
LHS.uHex = &Val;
RHS.twine = 0;
return Twine(LHS, UHexKind, RHS, EmptyKind);
}
/// @}
/// @name Predicate Operations
/// @{
/// isTriviallyEmpty - Check if this twine is trivially empty; a false
/// return value does not necessarily mean the twine is empty.
bool isTriviallyEmpty() const {
return isNullary();
}
/// isSingleStringRef - Return true if this twine can be dynamically
/// accessed as a single StringRef value with getSingleStringRef().
bool isSingleStringRef() const {
if (getRHSKind() != EmptyKind) return false;
switch (getLHSKind()) {
case EmptyKind:
case CStringKind:
case StdStringKind:
case StringRefKind:
return true;
default:
return false;
}
}
/// @}
/// @name String Operations
/// @{
Twine concat(const Twine &Suffix) const;
/// @}
/// @name Output & Conversion.
/// @{
/// str - Return the twine contents as a std::string.
std::string str() const;
/// toVector - Write the concatenated string into the given SmallString or
/// SmallVector.
void toVector(SmallVectorImpl<char> &Out) const;
/// getSingleStringRef - This returns the twine as a single StringRef. This
/// method is only valid if isSingleStringRef() is true.
StringRef getSingleStringRef() const {
assert(isSingleStringRef() &&"This cannot be had as a single stringref!");
switch (getLHSKind()) {
default: llvm_unreachable("Out of sync with isSingleStringRef");
case EmptyKind: return StringRef();
case CStringKind: return StringRef(LHS.cString);
case StdStringKind: return StringRef(*LHS.stdString);
case StringRefKind: return *LHS.stringRef;
}
}
/// toStringRef - This returns the twine as a single StringRef if it can be
/// represented as such. Otherwise the twine is written into the given
/// SmallVector and a StringRef to the SmallVector's data is returned.
StringRef toStringRef(SmallVectorImpl<char> &Out) const;
/// toNullTerminatedStringRef - This returns the twine as a single null
/// terminated StringRef if it can be represented as such. Otherwise the
/// twine is written into the given SmallVector and a StringRef to the
/// SmallVector's data is returned.
///
/// The returned StringRef's size does not include the null terminator.
StringRef toNullTerminatedStringRef(SmallVectorImpl<char> &Out) const;
/// Write the concatenated string represented by this twine to the
/// stream \p OS.
void print(raw_ostream &OS) const;
/// Dump the concatenated string represented by this twine to stderr.
void dump() const;
/// Write the representation of this twine to the stream \p OS.
void printRepr(raw_ostream &OS) const;
/// Dump the representation of this twine to stderr.
void dumpRepr() const;
/// @}
};
/// @name Twine Inline Implementations
/// @{
inline Twine Twine::concat(const Twine &Suffix) const {
// Concatenation with null is null.
if (isNull() || Suffix.isNull())
return Twine(NullKind);
// Concatenation with empty yields the other side.
if (isEmpty())
return Suffix;
if (Suffix.isEmpty())
return *this;
// Otherwise we need to create a new node, taking care to fold in unary
// twines.
Child NewLHS, NewRHS;
NewLHS.twine = this;
NewRHS.twine = &Suffix;
NodeKind NewLHSKind = TwineKind, NewRHSKind = TwineKind;
if (isUnary()) {
NewLHS = LHS;
NewLHSKind = getLHSKind();
}
if (Suffix.isUnary()) {
NewRHS = Suffix.LHS;
NewRHSKind = Suffix.getLHSKind();
}
return Twine(NewLHS, NewLHSKind, NewRHS, NewRHSKind);
}
inline Twine operator+(const Twine &LHS, const Twine &RHS) {
return LHS.concat(RHS);
}
/// Additional overload to guarantee simplified codegen; this is equivalent to
/// concat().
inline Twine operator+(const char *LHS, const StringRef &RHS) {
return Twine(LHS, RHS);
}
/// Additional overload to guarantee simplified codegen; this is equivalent to
/// concat().
inline Twine operator+(const StringRef &LHS, const char *RHS) {
return Twine(LHS, RHS);
}
inline raw_ostream &operator<<(raw_ostream &OS, const Twine &RHS) {
RHS.print(OS);
return OS;
}
/// @}
}
#endif

View File

@@ -0,0 +1,89 @@
//===-- llvm/ADT/UniqueVector.h ---------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_UNIQUEVECTOR_H
#define LLVM_ADT_UNIQUEVECTOR_H
#include <cassert>
#include <map>
#include <vector>
namespace llvm {
//===----------------------------------------------------------------------===//
/// UniqueVector - This class produces a sequential ID number (base 1) for each
/// unique entry that is added. T is the type of entries in the vector. This
/// class should have an implementation of operator== and of operator<.
/// Entries can be fetched using operator[] with the entry ID.
template<class T> class UniqueVector {
private:
// Map - Used to handle the correspondence of entry to ID.
std::map<T, unsigned> Map;
// Vector - ID ordered vector of entries. Entries can be indexed by ID - 1.
//
std::vector<T> Vector;
public:
/// insert - Append entry to the vector if it doesn't already exist. Returns
/// the entry's index + 1 to be used as a unique ID.
unsigned insert(const T &Entry) {
// Check if the entry is already in the map.
unsigned &Val = Map[Entry];
// See if entry exists, if so return prior ID.
if (Val) return Val;
// Compute ID for entry.
Val = static_cast<unsigned>(Vector.size()) + 1;
// Insert in vector.
Vector.push_back(Entry);
return Val;
}
/// idFor - return the ID for an existing entry. Returns 0 if the entry is
/// not found.
unsigned idFor(const T &Entry) const {
// Search for entry in the map.
typename std::map<T, unsigned>::const_iterator MI = Map.find(Entry);
// See if entry exists, if so return ID.
if (MI != Map.end()) return MI->second;
// No luck.
return 0;
}
/// operator[] - Returns a reference to the entry with the specified ID.
///
const T &operator[](unsigned ID) const {
assert(ID-1 < size() && "ID is 0 or out of range!");
return Vector[ID - 1];
}
/// size - Returns the number of entries in the vector.
///
size_t size() const { return Vector.size(); }
/// empty - Returns true if the vector is empty.
///
bool empty() const { return Vector.empty(); }
/// reset - Clears all the entries.
///
void reset() {
Map.clear();
Vector.resize(0, 0);
}
};
} // End of namespace llvm
#endif // LLVM_ADT_UNIQUEVECTOR_H

View File

@@ -0,0 +1,377 @@
//===- llvm/ADT/ValueMap.h - Safe map from Values to data -------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the ValueMap class. ValueMap maps Value* or any subclass
// to an arbitrary other type. It provides the DenseMap interface but updates
// itself to remain safe when keys are RAUWed or deleted. By default, when a
// key is RAUWed from V1 to V2, the old mapping V1->target is removed, and a new
// mapping V2->target is added. If V2 already existed, its old target is
// overwritten. When a key is deleted, its mapping is removed.
//
// You can override a ValueMap's Config parameter to control exactly what
// happens on RAUW and destruction and to get called back on each event. It's
// legal to call back into the ValueMap from a Config's callbacks. Config
// parameters should inherit from ValueMapConfig<KeyT> to get default
// implementations of all the methods ValueMap uses. See ValueMapConfig for
// documentation of the functions you can override.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_VALUEMAP_H
#define LLVM_ADT_VALUEMAP_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/Support/Mutex.h"
#include "llvm/Support/ValueHandle.h"
#include "llvm/Support/type_traits.h"
#include <iterator>
namespace llvm {
template<typename KeyT, typename ValueT, typename Config>
class ValueMapCallbackVH;
template<typename DenseMapT, typename KeyT>
class ValueMapIterator;
template<typename DenseMapT, typename KeyT>
class ValueMapConstIterator;
/// This class defines the default behavior for configurable aspects of
/// ValueMap<>. User Configs should inherit from this class to be as compatible
/// as possible with future versions of ValueMap.
template<typename KeyT>
struct ValueMapConfig {
/// If FollowRAUW is true, the ValueMap will update mappings on RAUW. If it's
/// false, the ValueMap will leave the original mapping in place.
enum { FollowRAUW = true };
// All methods will be called with a first argument of type ExtraData. The
// default implementations in this class take a templated first argument so
// that users' subclasses can use any type they want without having to
// override all the defaults.
struct ExtraData {};
template<typename ExtraDataT>
static void onRAUW(const ExtraDataT & /*Data*/, KeyT /*Old*/, KeyT /*New*/) {}
template<typename ExtraDataT>
static void onDelete(const ExtraDataT &/*Data*/, KeyT /*Old*/) {}
/// Returns a mutex that should be acquired around any changes to the map.
/// This is only acquired from the CallbackVH (and held around calls to onRAUW
/// and onDelete) and not inside other ValueMap methods. NULL means that no
/// mutex is necessary.
template<typename ExtraDataT>
static sys::Mutex *getMutex(const ExtraDataT &/*Data*/) { return NULL; }
};
/// See the file comment.
template<typename KeyT, typename ValueT, typename Config =ValueMapConfig<KeyT> >
class ValueMap {
friend class ValueMapCallbackVH<KeyT, ValueT, Config>;
typedef ValueMapCallbackVH<KeyT, ValueT, Config> ValueMapCVH;
typedef DenseMap<ValueMapCVH, ValueT, DenseMapInfo<ValueMapCVH> > MapT;
typedef typename Config::ExtraData ExtraData;
MapT Map;
ExtraData Data;
ValueMap(const ValueMap&) LLVM_DELETED_FUNCTION;
ValueMap& operator=(const ValueMap&) LLVM_DELETED_FUNCTION;
public:
typedef KeyT key_type;
typedef ValueT mapped_type;
typedef std::pair<KeyT, ValueT> value_type;
explicit ValueMap(unsigned NumInitBuckets = 64)
: Map(NumInitBuckets), Data() {}
explicit ValueMap(const ExtraData &Data, unsigned NumInitBuckets = 64)
: Map(NumInitBuckets), Data(Data) {}
~ValueMap() {}
typedef ValueMapIterator<MapT, KeyT> iterator;
typedef ValueMapConstIterator<MapT, KeyT> const_iterator;
inline iterator begin() { return iterator(Map.begin()); }
inline iterator end() { return iterator(Map.end()); }
inline const_iterator begin() const { return const_iterator(Map.begin()); }
inline const_iterator end() const { return const_iterator(Map.end()); }
bool empty() const { return Map.empty(); }
unsigned size() const { return Map.size(); }
/// Grow the map so that it has at least Size buckets. Does not shrink
void resize(size_t Size) { Map.resize(Size); }
void clear() { Map.clear(); }
/// count - Return true if the specified key is in the map.
bool count(const KeyT &Val) const {
return Map.find_as(Val) != Map.end();
}
iterator find(const KeyT &Val) {
return iterator(Map.find_as(Val));
}
const_iterator find(const KeyT &Val) const {
return const_iterator(Map.find_as(Val));
}
/// lookup - Return the entry for the specified key, or a default
/// constructed value if no such entry exists.
ValueT lookup(const KeyT &Val) const {
typename MapT::const_iterator I = Map.find_as(Val);
return I != Map.end() ? I->second : ValueT();
}
// Inserts key,value pair into the map if the key isn't already in the map.
// If the key is already in the map, it returns false and doesn't update the
// value.
std::pair<iterator, bool> insert(const std::pair<KeyT, ValueT> &KV) {
std::pair<typename MapT::iterator, bool> map_result=
Map.insert(std::make_pair(Wrap(KV.first), KV.second));
return std::make_pair(iterator(map_result.first), map_result.second);
}
/// insert - Range insertion of pairs.
template<typename InputIt>
void insert(InputIt I, InputIt E) {
for (; I != E; ++I)
insert(*I);
}
bool erase(const KeyT &Val) {
typename MapT::iterator I = Map.find_as(Val);
if (I == Map.end())
return false;
Map.erase(I);
return true;
}
void erase(iterator I) {
return Map.erase(I.base());
}
value_type& FindAndConstruct(const KeyT &Key) {
return Map.FindAndConstruct(Wrap(Key));
}
ValueT &operator[](const KeyT &Key) {
return Map[Wrap(Key)];
}
/// isPointerIntoBucketsArray - Return true if the specified pointer points
/// somewhere into the ValueMap's array of buckets (i.e. either to a key or
/// value in the ValueMap).
bool isPointerIntoBucketsArray(const void *Ptr) const {
return Map.isPointerIntoBucketsArray(Ptr);
}
/// getPointerIntoBucketsArray() - Return an opaque pointer into the buckets
/// array. In conjunction with the previous method, this can be used to
/// determine whether an insertion caused the ValueMap to reallocate.
const void *getPointerIntoBucketsArray() const {
return Map.getPointerIntoBucketsArray();
}
private:
// Takes a key being looked up in the map and wraps it into a
// ValueMapCallbackVH, the actual key type of the map. We use a helper
// function because ValueMapCVH is constructed with a second parameter.
ValueMapCVH Wrap(KeyT key) const {
// The only way the resulting CallbackVH could try to modify *this (making
// the const_cast incorrect) is if it gets inserted into the map. But then
// this function must have been called from a non-const method, making the
// const_cast ok.
return ValueMapCVH(key, const_cast<ValueMap*>(this));
}
};
// This CallbackVH updates its ValueMap when the contained Value changes,
// according to the user's preferences expressed through the Config object.
template<typename KeyT, typename ValueT, typename Config>
class ValueMapCallbackVH : public CallbackVH {
friend class ValueMap<KeyT, ValueT, Config>;
friend struct DenseMapInfo<ValueMapCallbackVH>;
typedef ValueMap<KeyT, ValueT, Config> ValueMapT;
typedef typename llvm::remove_pointer<KeyT>::type KeySansPointerT;
ValueMapT *Map;
ValueMapCallbackVH(KeyT Key, ValueMapT *Map)
: CallbackVH(const_cast<Value*>(static_cast<const Value*>(Key))),
Map(Map) {}
public:
KeyT Unwrap() const { return cast_or_null<KeySansPointerT>(getValPtr()); }
virtual void deleted() {
// Make a copy that won't get changed even when *this is destroyed.
ValueMapCallbackVH Copy(*this);
sys::Mutex *M = Config::getMutex(Copy.Map->Data);
if (M)
M->acquire();
Config::onDelete(Copy.Map->Data, Copy.Unwrap()); // May destroy *this.
Copy.Map->Map.erase(Copy); // Definitely destroys *this.
if (M)
M->release();
}
virtual void allUsesReplacedWith(Value *new_key) {
assert(isa<KeySansPointerT>(new_key) &&
"Invalid RAUW on key of ValueMap<>");
// Make a copy that won't get changed even when *this is destroyed.
ValueMapCallbackVH Copy(*this);
sys::Mutex *M = Config::getMutex(Copy.Map->Data);
if (M)
M->acquire();
KeyT typed_new_key = cast<KeySansPointerT>(new_key);
// Can destroy *this:
Config::onRAUW(Copy.Map->Data, Copy.Unwrap(), typed_new_key);
if (Config::FollowRAUW) {
typename ValueMapT::MapT::iterator I = Copy.Map->Map.find(Copy);
// I could == Copy.Map->Map.end() if the onRAUW callback already
// removed the old mapping.
if (I != Copy.Map->Map.end()) {
ValueT Target(I->second);
Copy.Map->Map.erase(I); // Definitely destroys *this.
Copy.Map->insert(std::make_pair(typed_new_key, Target));
}
}
if (M)
M->release();
}
};
template<typename KeyT, typename ValueT, typename Config>
struct DenseMapInfo<ValueMapCallbackVH<KeyT, ValueT, Config> > {
typedef ValueMapCallbackVH<KeyT, ValueT, Config> VH;
typedef DenseMapInfo<KeyT> PointerInfo;
static inline VH getEmptyKey() {
return VH(PointerInfo::getEmptyKey(), NULL);
}
static inline VH getTombstoneKey() {
return VH(PointerInfo::getTombstoneKey(), NULL);
}
static unsigned getHashValue(const VH &Val) {
return PointerInfo::getHashValue(Val.Unwrap());
}
static unsigned getHashValue(const KeyT &Val) {
return PointerInfo::getHashValue(Val);
}
static bool isEqual(const VH &LHS, const VH &RHS) {
return LHS == RHS;
}
static bool isEqual(const KeyT &LHS, const VH &RHS) {
return LHS == RHS.getValPtr();
}
};
template<typename DenseMapT, typename KeyT>
class ValueMapIterator :
public std::iterator<std::forward_iterator_tag,
std::pair<KeyT, typename DenseMapT::mapped_type>,
ptrdiff_t> {
typedef typename DenseMapT::iterator BaseT;
typedef typename DenseMapT::mapped_type ValueT;
BaseT I;
public:
ValueMapIterator() : I() {}
ValueMapIterator(BaseT I) : I(I) {}
BaseT base() const { return I; }
struct ValueTypeProxy {
const KeyT first;
ValueT& second;
ValueTypeProxy *operator->() { return this; }
operator std::pair<KeyT, ValueT>() const {
return std::make_pair(first, second);
}
};
ValueTypeProxy operator*() const {
ValueTypeProxy Result = {I->first.Unwrap(), I->second};
return Result;
}
ValueTypeProxy operator->() const {
return operator*();
}
bool operator==(const ValueMapIterator &RHS) const {
return I == RHS.I;
}
bool operator!=(const ValueMapIterator &RHS) const {
return I != RHS.I;
}
inline ValueMapIterator& operator++() { // Preincrement
++I;
return *this;
}
ValueMapIterator operator++(int) { // Postincrement
ValueMapIterator tmp = *this; ++*this; return tmp;
}
};
template<typename DenseMapT, typename KeyT>
class ValueMapConstIterator :
public std::iterator<std::forward_iterator_tag,
std::pair<KeyT, typename DenseMapT::mapped_type>,
ptrdiff_t> {
typedef typename DenseMapT::const_iterator BaseT;
typedef typename DenseMapT::mapped_type ValueT;
BaseT I;
public:
ValueMapConstIterator() : I() {}
ValueMapConstIterator(BaseT I) : I(I) {}
ValueMapConstIterator(ValueMapIterator<DenseMapT, KeyT> Other)
: I(Other.base()) {}
BaseT base() const { return I; }
struct ValueTypeProxy {
const KeyT first;
const ValueT& second;
ValueTypeProxy *operator->() { return this; }
operator std::pair<KeyT, ValueT>() const {
return std::make_pair(first, second);
}
};
ValueTypeProxy operator*() const {
ValueTypeProxy Result = {I->first.Unwrap(), I->second};
return Result;
}
ValueTypeProxy operator->() const {
return operator*();
}
bool operator==(const ValueMapConstIterator &RHS) const {
return I == RHS.I;
}
bool operator!=(const ValueMapConstIterator &RHS) const {
return I != RHS.I;
}
inline ValueMapConstIterator& operator++() { // Preincrement
++I;
return *this;
}
ValueMapConstIterator operator++(int) { // Postincrement
ValueMapConstIterator tmp = *this; ++*this; return tmp;
}
};
} // end namespace llvm
#endif

View File

@@ -0,0 +1,331 @@
//===--- VariadicFunctions.h - Variadic Functions ---------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements compile-time type-safe variadic functions.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_VARIADICFUNCTION_H
#define LLVM_ADT_VARIADICFUNCTION_H
#include "llvm/ADT/ArrayRef.h"
namespace llvm {
// Define macros to aid in expanding a comma separated series with the index of
// the series pasted onto the last token.
#define LLVM_COMMA_JOIN1(x) x ## 0
#define LLVM_COMMA_JOIN2(x) LLVM_COMMA_JOIN1(x), x ## 1
#define LLVM_COMMA_JOIN3(x) LLVM_COMMA_JOIN2(x), x ## 2
#define LLVM_COMMA_JOIN4(x) LLVM_COMMA_JOIN3(x), x ## 3
#define LLVM_COMMA_JOIN5(x) LLVM_COMMA_JOIN4(x), x ## 4
#define LLVM_COMMA_JOIN6(x) LLVM_COMMA_JOIN5(x), x ## 5
#define LLVM_COMMA_JOIN7(x) LLVM_COMMA_JOIN6(x), x ## 6
#define LLVM_COMMA_JOIN8(x) LLVM_COMMA_JOIN7(x), x ## 7
#define LLVM_COMMA_JOIN9(x) LLVM_COMMA_JOIN8(x), x ## 8
#define LLVM_COMMA_JOIN10(x) LLVM_COMMA_JOIN9(x), x ## 9
#define LLVM_COMMA_JOIN11(x) LLVM_COMMA_JOIN10(x), x ## 10
#define LLVM_COMMA_JOIN12(x) LLVM_COMMA_JOIN11(x), x ## 11
#define LLVM_COMMA_JOIN13(x) LLVM_COMMA_JOIN12(x), x ## 12
#define LLVM_COMMA_JOIN14(x) LLVM_COMMA_JOIN13(x), x ## 13
#define LLVM_COMMA_JOIN15(x) LLVM_COMMA_JOIN14(x), x ## 14
#define LLVM_COMMA_JOIN16(x) LLVM_COMMA_JOIN15(x), x ## 15
#define LLVM_COMMA_JOIN17(x) LLVM_COMMA_JOIN16(x), x ## 16
#define LLVM_COMMA_JOIN18(x) LLVM_COMMA_JOIN17(x), x ## 17
#define LLVM_COMMA_JOIN19(x) LLVM_COMMA_JOIN18(x), x ## 18
#define LLVM_COMMA_JOIN20(x) LLVM_COMMA_JOIN19(x), x ## 19
#define LLVM_COMMA_JOIN21(x) LLVM_COMMA_JOIN20(x), x ## 20
#define LLVM_COMMA_JOIN22(x) LLVM_COMMA_JOIN21(x), x ## 21
#define LLVM_COMMA_JOIN23(x) LLVM_COMMA_JOIN22(x), x ## 22
#define LLVM_COMMA_JOIN24(x) LLVM_COMMA_JOIN23(x), x ## 23
#define LLVM_COMMA_JOIN25(x) LLVM_COMMA_JOIN24(x), x ## 24
#define LLVM_COMMA_JOIN26(x) LLVM_COMMA_JOIN25(x), x ## 25
#define LLVM_COMMA_JOIN27(x) LLVM_COMMA_JOIN26(x), x ## 26
#define LLVM_COMMA_JOIN28(x) LLVM_COMMA_JOIN27(x), x ## 27
#define LLVM_COMMA_JOIN29(x) LLVM_COMMA_JOIN28(x), x ## 28
#define LLVM_COMMA_JOIN30(x) LLVM_COMMA_JOIN29(x), x ## 29
#define LLVM_COMMA_JOIN31(x) LLVM_COMMA_JOIN30(x), x ## 30
#define LLVM_COMMA_JOIN32(x) LLVM_COMMA_JOIN31(x), x ## 31
/// \brief Class which can simulate a type-safe variadic function.
///
/// The VariadicFunction class template makes it easy to define
/// type-safe variadic functions where all arguments have the same
/// type.
///
/// Suppose we need a variadic function like this:
///
/// ResultT Foo(const ArgT &A_0, const ArgT &A_1, ..., const ArgT &A_N);
///
/// Instead of many overloads of Foo(), we only need to define a helper
/// function that takes an array of arguments:
///
/// ResultT FooImpl(ArrayRef<const ArgT *> Args) {
/// // 'Args[i]' is a pointer to the i-th argument passed to Foo().
/// ...
/// }
///
/// and then define Foo() like this:
///
/// const VariadicFunction<ResultT, ArgT, FooImpl> Foo;
///
/// VariadicFunction takes care of defining the overloads of Foo().
///
/// Actually, Foo is a function object (i.e. functor) instead of a plain
/// function. This object is stateless and its constructor/destructor
/// does nothing, so it's safe to create global objects and call Foo(...) at
/// any time.
///
/// Sometimes we need a variadic function to have some fixed leading
/// arguments whose types may be different from that of the optional
/// arguments. For example:
///
/// bool FullMatch(const StringRef &S, const RE &Regex,
/// const ArgT &A_0, ..., const ArgT &A_N);
///
/// VariadicFunctionN is for such cases, where N is the number of fixed
/// arguments. It is like VariadicFunction, except that it takes N more
/// template arguments for the types of the fixed arguments:
///
/// bool FullMatchImpl(const StringRef &S, const RE &Regex,
/// ArrayRef<const ArgT *> Args) { ... }
/// const VariadicFunction2<bool, const StringRef&,
/// const RE&, ArgT, FullMatchImpl>
/// FullMatch;
///
/// Currently VariadicFunction and friends support up-to 3
/// fixed leading arguments and up-to 32 optional arguments.
template <typename ResultT, typename ArgT,
ResultT (*Func)(ArrayRef<const ArgT *>)>
struct VariadicFunction {
ResultT operator()() const {
return Func(ArrayRef<const ArgT *>());
}
#define LLVM_DEFINE_OVERLOAD(N) \
ResultT operator()(LLVM_COMMA_JOIN ## N(const ArgT &A)) const { \
const ArgT *const Args[] = { LLVM_COMMA_JOIN ## N(&A) }; \
return Func(makeArrayRef(Args)); \
}
LLVM_DEFINE_OVERLOAD(1)
LLVM_DEFINE_OVERLOAD(2)
LLVM_DEFINE_OVERLOAD(3)
LLVM_DEFINE_OVERLOAD(4)
LLVM_DEFINE_OVERLOAD(5)
LLVM_DEFINE_OVERLOAD(6)
LLVM_DEFINE_OVERLOAD(7)
LLVM_DEFINE_OVERLOAD(8)
LLVM_DEFINE_OVERLOAD(9)
LLVM_DEFINE_OVERLOAD(10)
LLVM_DEFINE_OVERLOAD(11)
LLVM_DEFINE_OVERLOAD(12)
LLVM_DEFINE_OVERLOAD(13)
LLVM_DEFINE_OVERLOAD(14)
LLVM_DEFINE_OVERLOAD(15)
LLVM_DEFINE_OVERLOAD(16)
LLVM_DEFINE_OVERLOAD(17)
LLVM_DEFINE_OVERLOAD(18)
LLVM_DEFINE_OVERLOAD(19)
LLVM_DEFINE_OVERLOAD(20)
LLVM_DEFINE_OVERLOAD(21)
LLVM_DEFINE_OVERLOAD(22)
LLVM_DEFINE_OVERLOAD(23)
LLVM_DEFINE_OVERLOAD(24)
LLVM_DEFINE_OVERLOAD(25)
LLVM_DEFINE_OVERLOAD(26)
LLVM_DEFINE_OVERLOAD(27)
LLVM_DEFINE_OVERLOAD(28)
LLVM_DEFINE_OVERLOAD(29)
LLVM_DEFINE_OVERLOAD(30)
LLVM_DEFINE_OVERLOAD(31)
LLVM_DEFINE_OVERLOAD(32)
#undef LLVM_DEFINE_OVERLOAD
};
template <typename ResultT, typename Param0T, typename ArgT,
ResultT (*Func)(Param0T, ArrayRef<const ArgT *>)>
struct VariadicFunction1 {
ResultT operator()(Param0T P0) const {
return Func(P0, ArrayRef<const ArgT *>());
}
#define LLVM_DEFINE_OVERLOAD(N) \
ResultT operator()(Param0T P0, LLVM_COMMA_JOIN ## N(const ArgT &A)) const { \
const ArgT *const Args[] = { LLVM_COMMA_JOIN ## N(&A) }; \
return Func(P0, makeArrayRef(Args)); \
}
LLVM_DEFINE_OVERLOAD(1)
LLVM_DEFINE_OVERLOAD(2)
LLVM_DEFINE_OVERLOAD(3)
LLVM_DEFINE_OVERLOAD(4)
LLVM_DEFINE_OVERLOAD(5)
LLVM_DEFINE_OVERLOAD(6)
LLVM_DEFINE_OVERLOAD(7)
LLVM_DEFINE_OVERLOAD(8)
LLVM_DEFINE_OVERLOAD(9)
LLVM_DEFINE_OVERLOAD(10)
LLVM_DEFINE_OVERLOAD(11)
LLVM_DEFINE_OVERLOAD(12)
LLVM_DEFINE_OVERLOAD(13)
LLVM_DEFINE_OVERLOAD(14)
LLVM_DEFINE_OVERLOAD(15)
LLVM_DEFINE_OVERLOAD(16)
LLVM_DEFINE_OVERLOAD(17)
LLVM_DEFINE_OVERLOAD(18)
LLVM_DEFINE_OVERLOAD(19)
LLVM_DEFINE_OVERLOAD(20)
LLVM_DEFINE_OVERLOAD(21)
LLVM_DEFINE_OVERLOAD(22)
LLVM_DEFINE_OVERLOAD(23)
LLVM_DEFINE_OVERLOAD(24)
LLVM_DEFINE_OVERLOAD(25)
LLVM_DEFINE_OVERLOAD(26)
LLVM_DEFINE_OVERLOAD(27)
LLVM_DEFINE_OVERLOAD(28)
LLVM_DEFINE_OVERLOAD(29)
LLVM_DEFINE_OVERLOAD(30)
LLVM_DEFINE_OVERLOAD(31)
LLVM_DEFINE_OVERLOAD(32)
#undef LLVM_DEFINE_OVERLOAD
};
template <typename ResultT, typename Param0T, typename Param1T, typename ArgT,
ResultT (*Func)(Param0T, Param1T, ArrayRef<const ArgT *>)>
struct VariadicFunction2 {
ResultT operator()(Param0T P0, Param1T P1) const {
return Func(P0, P1, ArrayRef<const ArgT *>());
}
#define LLVM_DEFINE_OVERLOAD(N) \
ResultT operator()(Param0T P0, Param1T P1, \
LLVM_COMMA_JOIN ## N(const ArgT &A)) const { \
const ArgT *const Args[] = { LLVM_COMMA_JOIN ## N(&A) }; \
return Func(P0, P1, makeArrayRef(Args)); \
}
LLVM_DEFINE_OVERLOAD(1)
LLVM_DEFINE_OVERLOAD(2)
LLVM_DEFINE_OVERLOAD(3)
LLVM_DEFINE_OVERLOAD(4)
LLVM_DEFINE_OVERLOAD(5)
LLVM_DEFINE_OVERLOAD(6)
LLVM_DEFINE_OVERLOAD(7)
LLVM_DEFINE_OVERLOAD(8)
LLVM_DEFINE_OVERLOAD(9)
LLVM_DEFINE_OVERLOAD(10)
LLVM_DEFINE_OVERLOAD(11)
LLVM_DEFINE_OVERLOAD(12)
LLVM_DEFINE_OVERLOAD(13)
LLVM_DEFINE_OVERLOAD(14)
LLVM_DEFINE_OVERLOAD(15)
LLVM_DEFINE_OVERLOAD(16)
LLVM_DEFINE_OVERLOAD(17)
LLVM_DEFINE_OVERLOAD(18)
LLVM_DEFINE_OVERLOAD(19)
LLVM_DEFINE_OVERLOAD(20)
LLVM_DEFINE_OVERLOAD(21)
LLVM_DEFINE_OVERLOAD(22)
LLVM_DEFINE_OVERLOAD(23)
LLVM_DEFINE_OVERLOAD(24)
LLVM_DEFINE_OVERLOAD(25)
LLVM_DEFINE_OVERLOAD(26)
LLVM_DEFINE_OVERLOAD(27)
LLVM_DEFINE_OVERLOAD(28)
LLVM_DEFINE_OVERLOAD(29)
LLVM_DEFINE_OVERLOAD(30)
LLVM_DEFINE_OVERLOAD(31)
LLVM_DEFINE_OVERLOAD(32)
#undef LLVM_DEFINE_OVERLOAD
};
template <typename ResultT, typename Param0T, typename Param1T,
typename Param2T, typename ArgT,
ResultT (*Func)(Param0T, Param1T, Param2T, ArrayRef<const ArgT *>)>
struct VariadicFunction3 {
ResultT operator()(Param0T P0, Param1T P1, Param2T P2) const {
return Func(P0, P1, P2, ArrayRef<const ArgT *>());
}
#define LLVM_DEFINE_OVERLOAD(N) \
ResultT operator()(Param0T P0, Param1T P1, Param2T P2, \
LLVM_COMMA_JOIN ## N(const ArgT &A)) const { \
const ArgT *const Args[] = { LLVM_COMMA_JOIN ## N(&A) }; \
return Func(P0, P1, P2, makeArrayRef(Args)); \
}
LLVM_DEFINE_OVERLOAD(1)
LLVM_DEFINE_OVERLOAD(2)
LLVM_DEFINE_OVERLOAD(3)
LLVM_DEFINE_OVERLOAD(4)
LLVM_DEFINE_OVERLOAD(5)
LLVM_DEFINE_OVERLOAD(6)
LLVM_DEFINE_OVERLOAD(7)
LLVM_DEFINE_OVERLOAD(8)
LLVM_DEFINE_OVERLOAD(9)
LLVM_DEFINE_OVERLOAD(10)
LLVM_DEFINE_OVERLOAD(11)
LLVM_DEFINE_OVERLOAD(12)
LLVM_DEFINE_OVERLOAD(13)
LLVM_DEFINE_OVERLOAD(14)
LLVM_DEFINE_OVERLOAD(15)
LLVM_DEFINE_OVERLOAD(16)
LLVM_DEFINE_OVERLOAD(17)
LLVM_DEFINE_OVERLOAD(18)
LLVM_DEFINE_OVERLOAD(19)
LLVM_DEFINE_OVERLOAD(20)
LLVM_DEFINE_OVERLOAD(21)
LLVM_DEFINE_OVERLOAD(22)
LLVM_DEFINE_OVERLOAD(23)
LLVM_DEFINE_OVERLOAD(24)
LLVM_DEFINE_OVERLOAD(25)
LLVM_DEFINE_OVERLOAD(26)
LLVM_DEFINE_OVERLOAD(27)
LLVM_DEFINE_OVERLOAD(28)
LLVM_DEFINE_OVERLOAD(29)
LLVM_DEFINE_OVERLOAD(30)
LLVM_DEFINE_OVERLOAD(31)
LLVM_DEFINE_OVERLOAD(32)
#undef LLVM_DEFINE_OVERLOAD
};
// Cleanup the macro namespace.
#undef LLVM_COMMA_JOIN1
#undef LLVM_COMMA_JOIN2
#undef LLVM_COMMA_JOIN3
#undef LLVM_COMMA_JOIN4
#undef LLVM_COMMA_JOIN5
#undef LLVM_COMMA_JOIN6
#undef LLVM_COMMA_JOIN7
#undef LLVM_COMMA_JOIN8
#undef LLVM_COMMA_JOIN9
#undef LLVM_COMMA_JOIN10
#undef LLVM_COMMA_JOIN11
#undef LLVM_COMMA_JOIN12
#undef LLVM_COMMA_JOIN13
#undef LLVM_COMMA_JOIN14
#undef LLVM_COMMA_JOIN15
#undef LLVM_COMMA_JOIN16
#undef LLVM_COMMA_JOIN17
#undef LLVM_COMMA_JOIN18
#undef LLVM_COMMA_JOIN19
#undef LLVM_COMMA_JOIN20
#undef LLVM_COMMA_JOIN21
#undef LLVM_COMMA_JOIN22
#undef LLVM_COMMA_JOIN23
#undef LLVM_COMMA_JOIN24
#undef LLVM_COMMA_JOIN25
#undef LLVM_COMMA_JOIN26
#undef LLVM_COMMA_JOIN27
#undef LLVM_COMMA_JOIN28
#undef LLVM_COMMA_JOIN29
#undef LLVM_COMMA_JOIN30
#undef LLVM_COMMA_JOIN31
#undef LLVM_COMMA_JOIN32
} // end namespace llvm
#endif // LLVM_ADT_VARIADICFUNCTION_H

View File

@@ -0,0 +1,102 @@
//===-- llvm/ADT/edit_distance.h - Array edit distance function --- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a Levenshtein distance function that works for any two
// sequences, with each element of each sequence being analogous to a character
// in a string.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_EDIT_DISTANCE_H
#define LLVM_ADT_EDIT_DISTANCE_H
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/OwningPtr.h"
#include <algorithm>
namespace llvm {
/// \brief Determine the edit distance between two sequences.
///
/// \param FromArray the first sequence to compare.
///
/// \param ToArray the second sequence to compare.
///
/// \param AllowReplacements whether to allow element replacements (change one
/// element into another) as a single operation, rather than as two operations
/// (an insertion and a removal).
///
/// \param MaxEditDistance If non-zero, the maximum edit distance that this
/// routine is allowed to compute. If the edit distance will exceed that
/// maximum, returns \c MaxEditDistance+1.
///
/// \returns the minimum number of element insertions, removals, or (if
/// \p AllowReplacements is \c true) replacements needed to transform one of
/// the given sequences into the other. If zero, the sequences are identical.
template<typename T>
unsigned ComputeEditDistance(ArrayRef<T> FromArray, ArrayRef<T> ToArray,
bool AllowReplacements = true,
unsigned MaxEditDistance = 0) {
// The algorithm implemented below is the "classic"
// dynamic-programming algorithm for computing the Levenshtein
// distance, which is described here:
//
// http://en.wikipedia.org/wiki/Levenshtein_distance
//
// Although the algorithm is typically described using an m x n
// array, only two rows are used at a time, so this implemenation
// just keeps two separate vectors for those two rows.
typename ArrayRef<T>::size_type m = FromArray.size();
typename ArrayRef<T>::size_type n = ToArray.size();
const unsigned SmallBufferSize = 64;
unsigned SmallBuffer[SmallBufferSize];
llvm::OwningArrayPtr<unsigned> Allocated;
unsigned *Previous = SmallBuffer;
if (2*(n + 1) > SmallBufferSize) {
Previous = new unsigned [2*(n+1)];
Allocated.reset(Previous);
}
unsigned *Current = Previous + (n + 1);
for (unsigned i = 0; i <= n; ++i)
Previous[i] = i;
for (typename ArrayRef<T>::size_type y = 1; y <= m; ++y) {
Current[0] = y;
unsigned BestThisRow = Current[0];
for (typename ArrayRef<T>::size_type x = 1; x <= n; ++x) {
if (AllowReplacements) {
Current[x] = std::min(
Previous[x-1] + (FromArray[y-1] == ToArray[x-1] ? 0u : 1u),
std::min(Current[x-1], Previous[x])+1);
}
else {
if (FromArray[y-1] == ToArray[x-1]) Current[x] = Previous[x-1];
else Current[x] = std::min(Current[x-1], Previous[x]) + 1;
}
BestThisRow = std::min(BestThisRow, Current[x]);
}
if (MaxEditDistance && BestThisRow > MaxEditDistance)
return MaxEditDistance + 1;
unsigned *tmp = Current;
Current = Previous;
Previous = tmp;
}
unsigned Result = Previous[n];
return Result;
}
} // End llvm namespace
#endif

View File

@@ -0,0 +1,720 @@
//==-- llvm/ADT/ilist.h - Intrusive Linked List Template ---------*- C++ -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines classes to implement an intrusive doubly linked list class
// (i.e. each node of the list must contain a next and previous field for the
// list.
//
// The ilist_traits trait class is used to gain access to the next and previous
// fields of the node type that the list is instantiated with. If it is not
// specialized, the list defaults to using the getPrev(), getNext() method calls
// to get the next and previous pointers.
//
// The ilist class itself, should be a plug in replacement for list, assuming
// that the nodes contain next/prev pointers. This list replacement does not
// provide a constant time size() method, so be careful to use empty() when you
// really want to know if it's empty.
//
// The ilist class is implemented by allocating a 'tail' node when the list is
// created (using ilist_traits<>::createSentinel()). This tail node is
// absolutely required because the user must be able to compute end()-1. Because
// of this, users of the direct next/prev links will see an extra link on the
// end of the list, which should be ignored.
//
// Requirements for a user of this list:
//
// 1. The user must provide {g|s}et{Next|Prev} methods, or specialize
// ilist_traits to provide an alternate way of getting and setting next and
// prev links.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_ILIST_H
#define LLVM_ADT_ILIST_H
#include "llvm/Support/Compiler.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <iterator>
namespace llvm {
template<typename NodeTy, typename Traits> class iplist;
template<typename NodeTy> class ilist_iterator;
/// ilist_nextprev_traits - A fragment for template traits for intrusive list
/// that provides default next/prev implementations for common operations.
///
template<typename NodeTy>
struct ilist_nextprev_traits {
static NodeTy *getPrev(NodeTy *N) { return N->getPrev(); }
static NodeTy *getNext(NodeTy *N) { return N->getNext(); }
static const NodeTy *getPrev(const NodeTy *N) { return N->getPrev(); }
static const NodeTy *getNext(const NodeTy *N) { return N->getNext(); }
static void setPrev(NodeTy *N, NodeTy *Prev) { N->setPrev(Prev); }
static void setNext(NodeTy *N, NodeTy *Next) { N->setNext(Next); }
};
template<typename NodeTy>
struct ilist_traits;
/// ilist_sentinel_traits - A fragment for template traits for intrusive list
/// that provides default sentinel implementations for common operations.
///
/// ilist_sentinel_traits implements a lazy dynamic sentinel allocation
/// strategy. The sentinel is stored in the prev field of ilist's Head.
///
template<typename NodeTy>
struct ilist_sentinel_traits {
/// createSentinel - create the dynamic sentinel
static NodeTy *createSentinel() { return new NodeTy(); }
/// destroySentinel - deallocate the dynamic sentinel
static void destroySentinel(NodeTy *N) { delete N; }
/// provideInitialHead - when constructing an ilist, provide a starting
/// value for its Head
/// @return null node to indicate that it needs to be allocated later
static NodeTy *provideInitialHead() { return 0; }
/// ensureHead - make sure that Head is either already
/// initialized or assigned a fresh sentinel
/// @return the sentinel
static NodeTy *ensureHead(NodeTy *&Head) {
if (!Head) {
Head = ilist_traits<NodeTy>::createSentinel();
ilist_traits<NodeTy>::noteHead(Head, Head);
ilist_traits<NodeTy>::setNext(Head, 0);
return Head;
}
return ilist_traits<NodeTy>::getPrev(Head);
}
/// noteHead - stash the sentinel into its default location
static void noteHead(NodeTy *NewHead, NodeTy *Sentinel) {
ilist_traits<NodeTy>::setPrev(NewHead, Sentinel);
}
};
/// ilist_node_traits - A fragment for template traits for intrusive list
/// that provides default node related operations.
///
template<typename NodeTy>
struct ilist_node_traits {
static NodeTy *createNode(const NodeTy &V) { return new NodeTy(V); }
static void deleteNode(NodeTy *V) { delete V; }
void addNodeToList(NodeTy *) {}
void removeNodeFromList(NodeTy *) {}
void transferNodesFromList(ilist_node_traits & /*SrcTraits*/,
ilist_iterator<NodeTy> /*first*/,
ilist_iterator<NodeTy> /*last*/) {}
};
/// ilist_default_traits - Default template traits for intrusive list.
/// By inheriting from this, you can easily use default implementations
/// for all common operations.
///
template<typename NodeTy>
struct ilist_default_traits : public ilist_nextprev_traits<NodeTy>,
public ilist_sentinel_traits<NodeTy>,
public ilist_node_traits<NodeTy> {
};
// Template traits for intrusive list. By specializing this template class, you
// can change what next/prev fields are used to store the links...
template<typename NodeTy>
struct ilist_traits : public ilist_default_traits<NodeTy> {};
// Const traits are the same as nonconst traits...
template<typename Ty>
struct ilist_traits<const Ty> : public ilist_traits<Ty> {};
//===----------------------------------------------------------------------===//
// ilist_iterator<Node> - Iterator for intrusive list.
//
template<typename NodeTy>
class ilist_iterator
: public std::iterator<std::bidirectional_iterator_tag, NodeTy, ptrdiff_t> {
public:
typedef ilist_traits<NodeTy> Traits;
typedef std::iterator<std::bidirectional_iterator_tag,
NodeTy, ptrdiff_t> super;
typedef typename super::value_type value_type;
typedef typename super::difference_type difference_type;
typedef typename super::pointer pointer;
typedef typename super::reference reference;
private:
pointer NodePtr;
// ilist_iterator is not a random-access iterator, but it has an
// implicit conversion to pointer-type, which is. Declare (but
// don't define) these functions as private to help catch
// accidental misuse.
void operator[](difference_type) const;
void operator+(difference_type) const;
void operator-(difference_type) const;
void operator+=(difference_type) const;
void operator-=(difference_type) const;
template<class T> void operator<(T) const;
template<class T> void operator<=(T) const;
template<class T> void operator>(T) const;
template<class T> void operator>=(T) const;
template<class T> void operator-(T) const;
public:
ilist_iterator(pointer NP) : NodePtr(NP) {}
ilist_iterator(reference NR) : NodePtr(&NR) {}
ilist_iterator() : NodePtr(0) {}
// This is templated so that we can allow constructing a const iterator from
// a nonconst iterator...
template<class node_ty>
ilist_iterator(const ilist_iterator<node_ty> &RHS)
: NodePtr(RHS.getNodePtrUnchecked()) {}
// This is templated so that we can allow assigning to a const iterator from
// a nonconst iterator...
template<class node_ty>
const ilist_iterator &operator=(const ilist_iterator<node_ty> &RHS) {
NodePtr = RHS.getNodePtrUnchecked();
return *this;
}
// Accessors...
operator pointer() const {
return NodePtr;
}
reference operator*() const {
return *NodePtr;
}
pointer operator->() const { return &operator*(); }
// Comparison operators
bool operator==(const ilist_iterator &RHS) const {
return NodePtr == RHS.NodePtr;
}
bool operator!=(const ilist_iterator &RHS) const {
return NodePtr != RHS.NodePtr;
}
// Increment and decrement operators...
ilist_iterator &operator--() { // predecrement - Back up
NodePtr = Traits::getPrev(NodePtr);
assert(NodePtr && "--'d off the beginning of an ilist!");
return *this;
}
ilist_iterator &operator++() { // preincrement - Advance
NodePtr = Traits::getNext(NodePtr);
return *this;
}
ilist_iterator operator--(int) { // postdecrement operators...
ilist_iterator tmp = *this;
--*this;
return tmp;
}
ilist_iterator operator++(int) { // postincrement operators...
ilist_iterator tmp = *this;
++*this;
return tmp;
}
// Internal interface, do not use...
pointer getNodePtrUnchecked() const { return NodePtr; }
};
// These are to catch errors when people try to use them as random access
// iterators.
template<typename T>
void operator-(int, ilist_iterator<T>) LLVM_DELETED_FUNCTION;
template<typename T>
void operator-(ilist_iterator<T>,int) LLVM_DELETED_FUNCTION;
template<typename T>
void operator+(int, ilist_iterator<T>) LLVM_DELETED_FUNCTION;
template<typename T>
void operator+(ilist_iterator<T>,int) LLVM_DELETED_FUNCTION;
// operator!=/operator== - Allow mixed comparisons without dereferencing
// the iterator, which could very likely be pointing to end().
template<typename T>
bool operator!=(const T* LHS, const ilist_iterator<const T> &RHS) {
return LHS != RHS.getNodePtrUnchecked();
}
template<typename T>
bool operator==(const T* LHS, const ilist_iterator<const T> &RHS) {
return LHS == RHS.getNodePtrUnchecked();
}
template<typename T>
bool operator!=(T* LHS, const ilist_iterator<T> &RHS) {
return LHS != RHS.getNodePtrUnchecked();
}
template<typename T>
bool operator==(T* LHS, const ilist_iterator<T> &RHS) {
return LHS == RHS.getNodePtrUnchecked();
}
// Allow ilist_iterators to convert into pointers to a node automatically when
// used by the dyn_cast, cast, isa mechanisms...
template<typename From> struct simplify_type;
template<typename NodeTy> struct simplify_type<ilist_iterator<NodeTy> > {
typedef NodeTy* SimpleType;
static SimpleType getSimplifiedValue(ilist_iterator<NodeTy> &Node) {
return &*Node;
}
};
template<typename NodeTy> struct simplify_type<const ilist_iterator<NodeTy> > {
typedef /*const*/ NodeTy* SimpleType;
static SimpleType getSimplifiedValue(const ilist_iterator<NodeTy> &Node) {
return &*Node;
}
};
//===----------------------------------------------------------------------===//
//
/// iplist - The subset of list functionality that can safely be used on nodes
/// of polymorphic types, i.e. a heterogeneous list with a common base class that
/// holds the next/prev pointers. The only state of the list itself is a single
/// pointer to the head of the list.
///
/// This list can be in one of three interesting states:
/// 1. The list may be completely unconstructed. In this case, the head
/// pointer is null. When in this form, any query for an iterator (e.g.
/// begin() or end()) causes the list to transparently change to state #2.
/// 2. The list may be empty, but contain a sentinel for the end iterator. This
/// sentinel is created by the Traits::createSentinel method and is a link
/// in the list. When the list is empty, the pointer in the iplist points
/// to the sentinel. Once the sentinel is constructed, it
/// is not destroyed until the list is.
/// 3. The list may contain actual objects in it, which are stored as a doubly
/// linked list of nodes. One invariant of the list is that the predecessor
/// of the first node in the list always points to the last node in the list,
/// and the successor pointer for the sentinel (which always stays at the
/// end of the list) is always null.
///
template<typename NodeTy, typename Traits=ilist_traits<NodeTy> >
class iplist : public Traits {
mutable NodeTy *Head;
// Use the prev node pointer of 'head' as the tail pointer. This is really a
// circularly linked list where we snip the 'next' link from the sentinel node
// back to the first node in the list (to preserve assertions about going off
// the end of the list).
NodeTy *getTail() { return this->ensureHead(Head); }
const NodeTy *getTail() const { return this->ensureHead(Head); }
void setTail(NodeTy *N) const { this->noteHead(Head, N); }
/// CreateLazySentinel - This method verifies whether the sentinel for the
/// list has been created and lazily makes it if not.
void CreateLazySentinel() const {
this->ensureHead(Head);
}
static bool op_less(NodeTy &L, NodeTy &R) { return L < R; }
static bool op_equal(NodeTy &L, NodeTy &R) { return L == R; }
// No fundamental reason why iplist can't be copyable, but the default
// copy/copy-assign won't do.
iplist(const iplist &) LLVM_DELETED_FUNCTION;
void operator=(const iplist &) LLVM_DELETED_FUNCTION;
public:
typedef NodeTy *pointer;
typedef const NodeTy *const_pointer;
typedef NodeTy &reference;
typedef const NodeTy &const_reference;
typedef NodeTy value_type;
typedef ilist_iterator<NodeTy> iterator;
typedef ilist_iterator<const NodeTy> const_iterator;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
iplist() : Head(this->provideInitialHead()) {}
~iplist() {
if (!Head) return;
clear();
Traits::destroySentinel(getTail());
}
// Iterator creation methods.
iterator begin() {
CreateLazySentinel();
return iterator(Head);
}
const_iterator begin() const {
CreateLazySentinel();
return const_iterator(Head);
}
iterator end() {
CreateLazySentinel();
return iterator(getTail());
}
const_iterator end() const {
CreateLazySentinel();
return const_iterator(getTail());
}
// reverse iterator creation methods.
reverse_iterator rbegin() { return reverse_iterator(end()); }
const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); }
reverse_iterator rend() { return reverse_iterator(begin()); }
const_reverse_iterator rend() const { return const_reverse_iterator(begin());}
// Miscellaneous inspection routines.
size_type max_size() const { return size_type(-1); }
bool empty() const { return Head == 0 || Head == getTail(); }
// Front and back accessor functions...
reference front() {
assert(!empty() && "Called front() on empty list!");
return *Head;
}
const_reference front() const {
assert(!empty() && "Called front() on empty list!");
return *Head;
}
reference back() {
assert(!empty() && "Called back() on empty list!");
return *this->getPrev(getTail());
}
const_reference back() const {
assert(!empty() && "Called back() on empty list!");
return *this->getPrev(getTail());
}
void swap(iplist &RHS) {
assert(0 && "Swap does not use list traits callback correctly yet!");
std::swap(Head, RHS.Head);
}
iterator insert(iterator where, NodeTy *New) {
NodeTy *CurNode = where.getNodePtrUnchecked();
NodeTy *PrevNode = this->getPrev(CurNode);
this->setNext(New, CurNode);
this->setPrev(New, PrevNode);
if (CurNode != Head) // Is PrevNode off the beginning of the list?
this->setNext(PrevNode, New);
else
Head = New;
this->setPrev(CurNode, New);
this->addNodeToList(New); // Notify traits that we added a node...
return New;
}
iterator insertAfter(iterator where, NodeTy *New) {
if (empty())
return insert(begin(), New);
else
return insert(++where, New);
}
NodeTy *remove(iterator &IT) {
assert(IT != end() && "Cannot remove end of list!");
NodeTy *Node = &*IT;
NodeTy *NextNode = this->getNext(Node);
NodeTy *PrevNode = this->getPrev(Node);
if (Node != Head) // Is PrevNode off the beginning of the list?
this->setNext(PrevNode, NextNode);
else
Head = NextNode;
this->setPrev(NextNode, PrevNode);
IT = NextNode;
this->removeNodeFromList(Node); // Notify traits that we removed a node...
// Set the next/prev pointers of the current node to null. This isn't
// strictly required, but this catches errors where a node is removed from
// an ilist (and potentially deleted) with iterators still pointing at it.
// When those iterators are incremented or decremented, they will assert on
// the null next/prev pointer instead of "usually working".
this->setNext(Node, 0);
this->setPrev(Node, 0);
return Node;
}
NodeTy *remove(const iterator &IT) {
iterator MutIt = IT;
return remove(MutIt);
}
// erase - remove a node from the controlled sequence... and delete it.
iterator erase(iterator where) {
this->deleteNode(remove(where));
return where;
}
/// Remove all nodes from the list like clear(), but do not call
/// removeNodeFromList() or deleteNode().
///
/// This should only be used immediately before freeing nodes in bulk to
/// avoid traversing the list and bringing all the nodes into cache.
void clearAndLeakNodesUnsafely() {
if (Head) {
Head = getTail();
this->setPrev(Head, Head);
}
}
private:
// transfer - The heart of the splice function. Move linked list nodes from
// [first, last) into position.
//
void transfer(iterator position, iplist &L2, iterator first, iterator last) {
assert(first != last && "Should be checked by callers");
// Position cannot be contained in the range to be transferred.
// Check for the most common mistake.
assert(position != first &&
"Insertion point can't be one of the transferred nodes");
if (position != last) {
// Note: we have to be careful about the case when we move the first node
// in the list. This node is the list sentinel node and we can't move it.
NodeTy *ThisSentinel = getTail();
setTail(0);
NodeTy *L2Sentinel = L2.getTail();
L2.setTail(0);
// Remove [first, last) from its old position.
NodeTy *First = &*first, *Prev = this->getPrev(First);
NodeTy *Next = last.getNodePtrUnchecked(), *Last = this->getPrev(Next);
if (Prev)
this->setNext(Prev, Next);
else
L2.Head = Next;
this->setPrev(Next, Prev);
// Splice [first, last) into its new position.
NodeTy *PosNext = position.getNodePtrUnchecked();
NodeTy *PosPrev = this->getPrev(PosNext);
// Fix head of list...
if (PosPrev)
this->setNext(PosPrev, First);
else
Head = First;
this->setPrev(First, PosPrev);
// Fix end of list...
this->setNext(Last, PosNext);
this->setPrev(PosNext, Last);
this->transferNodesFromList(L2, First, PosNext);
// Now that everything is set, restore the pointers to the list sentinels.
L2.setTail(L2Sentinel);
setTail(ThisSentinel);
}
}
public:
//===----------------------------------------------------------------------===
// Functionality derived from other functions defined above...
//
size_type size() const {
if (Head == 0) return 0; // Don't require construction of sentinel if empty.
return std::distance(begin(), end());
}
iterator erase(iterator first, iterator last) {
while (first != last)
first = erase(first);
return last;
}
void clear() { if (Head) erase(begin(), end()); }
// Front and back inserters...
void push_front(NodeTy *val) { insert(begin(), val); }
void push_back(NodeTy *val) { insert(end(), val); }
void pop_front() {
assert(!empty() && "pop_front() on empty list!");
erase(begin());
}
void pop_back() {
assert(!empty() && "pop_back() on empty list!");
iterator t = end(); erase(--t);
}
// Special forms of insert...
template<class InIt> void insert(iterator where, InIt first, InIt last) {
for (; first != last; ++first) insert(where, *first);
}
// Splice members - defined in terms of transfer...
void splice(iterator where, iplist &L2) {
if (!L2.empty())
transfer(where, L2, L2.begin(), L2.end());
}
void splice(iterator where, iplist &L2, iterator first) {
iterator last = first; ++last;
if (where == first || where == last) return; // No change
transfer(where, L2, first, last);
}
void splice(iterator where, iplist &L2, iterator first, iterator last) {
if (first != last) transfer(where, L2, first, last);
}
//===----------------------------------------------------------------------===
// High-Level Functionality that shouldn't really be here, but is part of list
//
// These two functions are actually called remove/remove_if in list<>, but
// they actually do the job of erase, rename them accordingly.
//
void erase(const NodeTy &val) {
for (iterator I = begin(), E = end(); I != E; ) {
iterator next = I; ++next;
if (*I == val) erase(I);
I = next;
}
}
template<class Pr1> void erase_if(Pr1 pred) {
for (iterator I = begin(), E = end(); I != E; ) {
iterator next = I; ++next;
if (pred(*I)) erase(I);
I = next;
}
}
template<class Pr2> void unique(Pr2 pred) {
if (empty()) return;
for (iterator I = begin(), E = end(), Next = begin(); ++Next != E;) {
if (pred(*I))
erase(Next);
else
I = Next;
Next = I;
}
}
void unique() { unique(op_equal); }
template<class Pr3> void merge(iplist &right, Pr3 pred) {
iterator first1 = begin(), last1 = end();
iterator first2 = right.begin(), last2 = right.end();
while (first1 != last1 && first2 != last2)
if (pred(*first2, *first1)) {
iterator next = first2;
transfer(first1, right, first2, ++next);
first2 = next;
} else {
++first1;
}
if (first2 != last2) transfer(last1, right, first2, last2);
}
void merge(iplist &right) { return merge(right, op_less); }
template<class Pr3> void sort(Pr3 pred);
void sort() { sort(op_less); }
};
template<typename NodeTy>
struct ilist : public iplist<NodeTy> {
typedef typename iplist<NodeTy>::size_type size_type;
typedef typename iplist<NodeTy>::iterator iterator;
ilist() {}
ilist(const ilist &right) {
insert(this->begin(), right.begin(), right.end());
}
explicit ilist(size_type count) {
insert(this->begin(), count, NodeTy());
}
ilist(size_type count, const NodeTy &val) {
insert(this->begin(), count, val);
}
template<class InIt> ilist(InIt first, InIt last) {
insert(this->begin(), first, last);
}
// bring hidden functions into scope
using iplist<NodeTy>::insert;
using iplist<NodeTy>::push_front;
using iplist<NodeTy>::push_back;
// Main implementation here - Insert for a node passed by value...
iterator insert(iterator where, const NodeTy &val) {
return insert(where, this->createNode(val));
}
// Front and back inserters...
void push_front(const NodeTy &val) { insert(this->begin(), val); }
void push_back(const NodeTy &val) { insert(this->end(), val); }
void insert(iterator where, size_type count, const NodeTy &val) {
for (; count != 0; --count) insert(where, val);
}
// Assign special forms...
void assign(size_type count, const NodeTy &val) {
iterator I = this->begin();
for (; I != this->end() && count != 0; ++I, --count)
*I = val;
if (count != 0)
insert(this->end(), val, val);
else
erase(I, this->end());
}
template<class InIt> void assign(InIt first1, InIt last1) {
iterator first2 = this->begin(), last2 = this->end();
for ( ; first1 != last1 && first2 != last2; ++first1, ++first2)
*first1 = *first2;
if (first2 == last2)
erase(first1, last1);
else
insert(last1, first2, last2);
}
// Resize members...
void resize(size_type newsize, NodeTy val) {
iterator i = this->begin();
size_type len = 0;
for ( ; i != this->end() && len < newsize; ++i, ++len) /* empty*/ ;
if (len == newsize)
erase(i, this->end());
else // i == end()
insert(this->end(), newsize - len, val);
}
void resize(size_type newsize) { resize(newsize, NodeTy()); }
};
} // End llvm namespace
namespace std {
// Ensure that swap uses the fast list swap...
template<class Ty>
void swap(llvm::iplist<Ty> &Left, llvm::iplist<Ty> &Right) {
Left.swap(Right);
}
} // End 'std' extensions...
#endif // LLVM_ADT_ILIST_H

View File

@@ -0,0 +1,106 @@
//==-- llvm/ADT/ilist_node.h - Intrusive Linked List Helper ------*- C++ -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the ilist_node class template, which is a convenient
// base class for creating classes that can be used with ilists.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_ILISTNODE_H
#define LLVM_ADT_ILISTNODE_H
namespace llvm {
template<typename NodeTy>
struct ilist_traits;
/// ilist_half_node - Base class that provides prev services for sentinels.
///
template<typename NodeTy>
class ilist_half_node {
friend struct ilist_traits<NodeTy>;
NodeTy *Prev;
protected:
NodeTy *getPrev() { return Prev; }
const NodeTy *getPrev() const { return Prev; }
void setPrev(NodeTy *P) { Prev = P; }
ilist_half_node() : Prev(0) {}
};
template<typename NodeTy>
struct ilist_nextprev_traits;
/// ilist_node - Base class that provides next/prev services for nodes
/// that use ilist_nextprev_traits or ilist_default_traits.
///
template<typename NodeTy>
class ilist_node : private ilist_half_node<NodeTy> {
friend struct ilist_nextprev_traits<NodeTy>;
friend struct ilist_traits<NodeTy>;
NodeTy *Next;
NodeTy *getNext() { return Next; }
const NodeTy *getNext() const { return Next; }
void setNext(NodeTy *N) { Next = N; }
protected:
ilist_node() : Next(0) {}
public:
/// @name Adjacent Node Accessors
/// @{
/// \brief Get the previous node, or 0 for the list head.
NodeTy *getPrevNode() {
NodeTy *Prev = this->getPrev();
// Check for sentinel.
if (!Prev->getNext())
return 0;
return Prev;
}
/// \brief Get the previous node, or 0 for the list head.
const NodeTy *getPrevNode() const {
const NodeTy *Prev = this->getPrev();
// Check for sentinel.
if (!Prev->getNext())
return 0;
return Prev;
}
/// \brief Get the next node, or 0 for the list tail.
NodeTy *getNextNode() {
NodeTy *Next = getNext();
// Check for sentinel.
if (!Next->getNext())
return 0;
return Next;
}
/// \brief Get the next node, or 0 for the list tail.
const NodeTy *getNextNode() const {
const NodeTy *Next = getNext();
// Check for sentinel.
if (!Next->getNext())
return 0;
return Next;
}
/// @}
};
} // End llvm namespace
#endif

View File

@@ -0,0 +1,41 @@
//===--------- llvm/AddressingMode.h - Addressing Mode -------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// This file contains addressing mode data structures which are shared
// between LSR and a number of places in the codegen.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADDRESSING_MODE_H
#define LLVM_ADDRESSING_MODE_H
#include "llvm/Support/DataTypes.h"
namespace llvm {
class GlobalValue;
/// AddrMode - This represents an addressing mode of:
/// BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
/// If BaseGV is null, there is no BaseGV.
/// If BaseOffs is zero, there is no base offset.
/// If HasBaseReg is false, there is no base register.
/// If Scale is zero, there is no ScaleReg. Scale of 1 indicates a reg with
/// no scale.
///
struct AddrMode {
GlobalValue *BaseGV;
int64_t BaseOffs;
bool HasBaseReg;
int64_t Scale;
AddrMode() : BaseGV(0), BaseOffs(0), HasBaseReg(false), Scale(0) {}
};
} // End llvm namespace
#endif

View File

@@ -0,0 +1,598 @@
//===- llvm/Analysis/AliasAnalysis.h - Alias Analysis Interface -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the generic AliasAnalysis interface, which is used as the
// common interface used by all clients of alias analysis information, and
// implemented by all alias analysis implementations. Mod/Ref information is
// also captured by this interface.
//
// Implementations of this interface must implement the various virtual methods,
// which automatically provides functionality for the entire suite of client
// APIs.
//
// This API identifies memory regions with the Location class. The pointer
// component specifies the base memory address of the region. The Size specifies
// the maximum size (in address units) of the memory region, or UnknownSize if
// the size is not known. The TBAA tag identifies the "type" of the memory
// reference; see the TypeBasedAliasAnalysis class for details.
//
// Some non-obvious details include:
// - Pointers that point to two completely different objects in memory never
// alias, regardless of the value of the Size component.
// - NoAlias doesn't imply inequal pointers. The most obvious example of this
// is two pointers to constant memory. Even if they are equal, constant
// memory is never stored to, so there will never be any dependencies.
// In this and other situations, the pointers may be both NoAlias and
// MustAlias at the same time. The current API can only return one result,
// though this is rarely a problem in practice.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_ALIASANALYSIS_H
#define LLVM_ANALYSIS_ALIASANALYSIS_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/Support/CallSite.h"
namespace llvm {
class LoadInst;
class StoreInst;
class VAArgInst;
class DataLayout;
class TargetLibraryInfo;
class Pass;
class AnalysisUsage;
class MemTransferInst;
class MemIntrinsic;
class DominatorTree;
class AliasAnalysis {
protected:
const DataLayout *TD;
const TargetLibraryInfo *TLI;
private:
AliasAnalysis *AA; // Previous Alias Analysis to chain to.
protected:
/// InitializeAliasAnalysis - Subclasses must call this method to initialize
/// the AliasAnalysis interface before any other methods are called. This is
/// typically called by the run* methods of these subclasses. This may be
/// called multiple times.
///
void InitializeAliasAnalysis(Pass *P);
/// getAnalysisUsage - All alias analysis implementations should invoke this
/// directly (using AliasAnalysis::getAnalysisUsage(AU)).
virtual void getAnalysisUsage(AnalysisUsage &AU) const;
public:
static char ID; // Class identification, replacement for typeinfo
AliasAnalysis() : TD(0), TLI(0), AA(0) {}
virtual ~AliasAnalysis(); // We want to be subclassed
/// UnknownSize - This is a special value which can be used with the
/// size arguments in alias queries to indicate that the caller does not
/// know the sizes of the potential memory references.
static uint64_t const UnknownSize = ~UINT64_C(0);
/// getDataLayout - Return a pointer to the current DataLayout object, or
/// null if no DataLayout object is available.
///
const DataLayout *getDataLayout() const { return TD; }
/// getTargetLibraryInfo - Return a pointer to the current TargetLibraryInfo
/// object, or null if no TargetLibraryInfo object is available.
///
const TargetLibraryInfo *getTargetLibraryInfo() const { return TLI; }
/// getTypeStoreSize - Return the DataLayout store size for the given type,
/// if known, or a conservative value otherwise.
///
uint64_t getTypeStoreSize(Type *Ty);
//===--------------------------------------------------------------------===//
/// Alias Queries...
///
/// Location - A description of a memory location.
struct Location {
/// Ptr - The address of the start of the location.
const Value *Ptr;
/// Size - The maximum size of the location, in address-units, or
/// UnknownSize if the size is not known. Note that an unknown size does
/// not mean the pointer aliases the entire virtual address space, because
/// there are restrictions on stepping out of one object and into another.
/// See http://llvm.org/docs/LangRef.html#pointeraliasing
uint64_t Size;
/// TBAATag - The metadata node which describes the TBAA type of
/// the location, or null if there is no known unique tag.
const MDNode *TBAATag;
explicit Location(const Value *P = 0, uint64_t S = UnknownSize,
const MDNode *N = 0)
: Ptr(P), Size(S), TBAATag(N) {}
Location getWithNewPtr(const Value *NewPtr) const {
Location Copy(*this);
Copy.Ptr = NewPtr;
return Copy;
}
Location getWithNewSize(uint64_t NewSize) const {
Location Copy(*this);
Copy.Size = NewSize;
return Copy;
}
Location getWithoutTBAATag() const {
Location Copy(*this);
Copy.TBAATag = 0;
return Copy;
}
};
/// getLocation - Fill in Loc with information about the memory reference by
/// the given instruction.
Location getLocation(const LoadInst *LI);
Location getLocation(const StoreInst *SI);
Location getLocation(const VAArgInst *VI);
Location getLocation(const AtomicCmpXchgInst *CXI);
Location getLocation(const AtomicRMWInst *RMWI);
static Location getLocationForSource(const MemTransferInst *MTI);
static Location getLocationForDest(const MemIntrinsic *MI);
/// Alias analysis result - Either we know for sure that it does not alias, we
/// know for sure it must alias, or we don't know anything: The two pointers
/// _might_ alias. This enum is designed so you can do things like:
/// if (AA.alias(P1, P2)) { ... }
/// to check to see if two pointers might alias.
///
/// See docs/AliasAnalysis.html for more information on the specific meanings
/// of these values.
///
enum AliasResult {
NoAlias = 0, ///< No dependencies.
MayAlias, ///< Anything goes.
PartialAlias, ///< Pointers differ, but pointees overlap.
MustAlias ///< Pointers are equal.
};
/// alias - The main low level interface to the alias analysis implementation.
/// Returns an AliasResult indicating whether the two pointers are aliased to
/// each other. This is the interface that must be implemented by specific
/// alias analysis implementations.
virtual AliasResult alias(const Location &LocA, const Location &LocB);
/// alias - A convenience wrapper.
AliasResult alias(const Value *V1, uint64_t V1Size,
const Value *V2, uint64_t V2Size) {
return alias(Location(V1, V1Size), Location(V2, V2Size));
}
/// alias - A convenience wrapper.
AliasResult alias(const Value *V1, const Value *V2) {
return alias(V1, UnknownSize, V2, UnknownSize);
}
/// isNoAlias - A trivial helper function to check to see if the specified
/// pointers are no-alias.
bool isNoAlias(const Location &LocA, const Location &LocB) {
return alias(LocA, LocB) == NoAlias;
}
/// isNoAlias - A convenience wrapper.
bool isNoAlias(const Value *V1, uint64_t V1Size,
const Value *V2, uint64_t V2Size) {
return isNoAlias(Location(V1, V1Size), Location(V2, V2Size));
}
/// isNoAlias - A convenience wrapper.
bool isNoAlias(const Value *V1, const Value *V2) {
return isNoAlias(Location(V1), Location(V2));
}
/// isMustAlias - A convenience wrapper.
bool isMustAlias(const Location &LocA, const Location &LocB) {
return alias(LocA, LocB) == MustAlias;
}
/// isMustAlias - A convenience wrapper.
bool isMustAlias(const Value *V1, const Value *V2) {
return alias(V1, 1, V2, 1) == MustAlias;
}
/// pointsToConstantMemory - If the specified memory location is
/// known to be constant, return true. If OrLocal is true and the
/// specified memory location is known to be "local" (derived from
/// an alloca), return true. Otherwise return false.
virtual bool pointsToConstantMemory(const Location &Loc,
bool OrLocal = false);
/// pointsToConstantMemory - A convenient wrapper.
bool pointsToConstantMemory(const Value *P, bool OrLocal = false) {
return pointsToConstantMemory(Location(P), OrLocal);
}
//===--------------------------------------------------------------------===//
/// Simple mod/ref information...
///
/// ModRefResult - Represent the result of a mod/ref query. Mod and Ref are
/// bits which may be or'd together.
///
enum ModRefResult { NoModRef = 0, Ref = 1, Mod = 2, ModRef = 3 };
/// These values define additional bits used to define the
/// ModRefBehavior values.
enum { Nowhere = 0, ArgumentPointees = 4, Anywhere = 8 | ArgumentPointees };
/// ModRefBehavior - Summary of how a function affects memory in the program.
/// Loads from constant globals are not considered memory accesses for this
/// interface. Also, functions may freely modify stack space local to their
/// invocation without having to report it through these interfaces.
enum ModRefBehavior {
/// DoesNotAccessMemory - This function does not perform any non-local loads
/// or stores to memory.
///
/// This property corresponds to the GCC 'const' attribute.
/// This property corresponds to the LLVM IR 'readnone' attribute.
/// This property corresponds to the IntrNoMem LLVM intrinsic flag.
DoesNotAccessMemory = Nowhere | NoModRef,
/// OnlyReadsArgumentPointees - The only memory references in this function
/// (if it has any) are non-volatile loads from objects pointed to by its
/// pointer-typed arguments, with arbitrary offsets.
///
/// This property corresponds to the IntrReadArgMem LLVM intrinsic flag.
OnlyReadsArgumentPointees = ArgumentPointees | Ref,
/// OnlyAccessesArgumentPointees - The only memory references in this
/// function (if it has any) are non-volatile loads and stores from objects
/// pointed to by its pointer-typed arguments, with arbitrary offsets.
///
/// This property corresponds to the IntrReadWriteArgMem LLVM intrinsic flag.
OnlyAccessesArgumentPointees = ArgumentPointees | ModRef,
/// OnlyReadsMemory - This function does not perform any non-local stores or
/// volatile loads, but may read from any memory location.
///
/// This property corresponds to the GCC 'pure' attribute.
/// This property corresponds to the LLVM IR 'readonly' attribute.
/// This property corresponds to the IntrReadMem LLVM intrinsic flag.
OnlyReadsMemory = Anywhere | Ref,
/// UnknownModRefBehavior - This indicates that the function could not be
/// classified into one of the behaviors above.
UnknownModRefBehavior = Anywhere | ModRef
};
/// getModRefBehavior - Return the behavior when calling the given call site.
virtual ModRefBehavior getModRefBehavior(ImmutableCallSite CS);
/// getModRefBehavior - Return the behavior when calling the given function.
/// For use when the call site is not known.
virtual ModRefBehavior getModRefBehavior(const Function *F);
/// doesNotAccessMemory - If the specified call is known to never read or
/// write memory, return true. If the call only reads from known-constant
/// memory, it is also legal to return true. Calls that unwind the stack
/// are legal for this predicate.
///
/// Many optimizations (such as CSE and LICM) can be performed on such calls
/// without worrying about aliasing properties, and many calls have this
/// property (e.g. calls to 'sin' and 'cos').
///
/// This property corresponds to the GCC 'const' attribute.
///
bool doesNotAccessMemory(ImmutableCallSite CS) {
return getModRefBehavior(CS) == DoesNotAccessMemory;
}
/// doesNotAccessMemory - If the specified function is known to never read or
/// write memory, return true. For use when the call site is not known.
///
bool doesNotAccessMemory(const Function *F) {
return getModRefBehavior(F) == DoesNotAccessMemory;
}
/// onlyReadsMemory - If the specified call is known to only read from
/// non-volatile memory (or not access memory at all), return true. Calls
/// that unwind the stack are legal for this predicate.
///
/// This property allows many common optimizations to be performed in the
/// absence of interfering store instructions, such as CSE of strlen calls.
///
/// This property corresponds to the GCC 'pure' attribute.
///
bool onlyReadsMemory(ImmutableCallSite CS) {
return onlyReadsMemory(getModRefBehavior(CS));
}
/// onlyReadsMemory - If the specified function is known to only read from
/// non-volatile memory (or not access memory at all), return true. For use
/// when the call site is not known.
///
bool onlyReadsMemory(const Function *F) {
return onlyReadsMemory(getModRefBehavior(F));
}
/// onlyReadsMemory - Return true if functions with the specified behavior are
/// known to only read from non-volatile memory (or not access memory at all).
///
static bool onlyReadsMemory(ModRefBehavior MRB) {
return !(MRB & Mod);
}
/// onlyAccessesArgPointees - Return true if functions with the specified
/// behavior are known to read and write at most from objects pointed to by
/// their pointer-typed arguments (with arbitrary offsets).
///
static bool onlyAccessesArgPointees(ModRefBehavior MRB) {
return !(MRB & Anywhere & ~ArgumentPointees);
}
/// doesAccessArgPointees - Return true if functions with the specified
/// behavior are known to potentially read or write from objects pointed
/// to be their pointer-typed arguments (with arbitrary offsets).
///
static bool doesAccessArgPointees(ModRefBehavior MRB) {
return (MRB & ModRef) && (MRB & ArgumentPointees);
}
/// getModRefInfo - Return information about whether or not an instruction may
/// read or write the specified memory location. An instruction
/// that doesn't read or write memory may be trivially LICM'd for example.
ModRefResult getModRefInfo(const Instruction *I,
const Location &Loc) {
switch (I->getOpcode()) {
case Instruction::VAArg: return getModRefInfo((const VAArgInst*)I, Loc);
case Instruction::Load: return getModRefInfo((const LoadInst*)I, Loc);
case Instruction::Store: return getModRefInfo((const StoreInst*)I, Loc);
case Instruction::Fence: return getModRefInfo((const FenceInst*)I, Loc);
case Instruction::AtomicCmpXchg:
return getModRefInfo((const AtomicCmpXchgInst*)I, Loc);
case Instruction::AtomicRMW:
return getModRefInfo((const AtomicRMWInst*)I, Loc);
case Instruction::Call: return getModRefInfo((const CallInst*)I, Loc);
case Instruction::Invoke: return getModRefInfo((const InvokeInst*)I,Loc);
default: return NoModRef;
}
}
/// getModRefInfo - A convenience wrapper.
ModRefResult getModRefInfo(const Instruction *I,
const Value *P, uint64_t Size) {
return getModRefInfo(I, Location(P, Size));
}
/// getModRefInfo (for call sites) - Return information about whether
/// a particular call site modifies or reads the specified memory location.
virtual ModRefResult getModRefInfo(ImmutableCallSite CS,
const Location &Loc);
/// getModRefInfo (for call sites) - A convenience wrapper.
ModRefResult getModRefInfo(ImmutableCallSite CS,
const Value *P, uint64_t Size) {
return getModRefInfo(CS, Location(P, Size));
}
/// getModRefInfo (for calls) - Return information about whether
/// a particular call modifies or reads the specified memory location.
ModRefResult getModRefInfo(const CallInst *C, const Location &Loc) {
return getModRefInfo(ImmutableCallSite(C), Loc);
}
/// getModRefInfo (for calls) - A convenience wrapper.
ModRefResult getModRefInfo(const CallInst *C, const Value *P, uint64_t Size) {
return getModRefInfo(C, Location(P, Size));
}
/// getModRefInfo (for invokes) - Return information about whether
/// a particular invoke modifies or reads the specified memory location.
ModRefResult getModRefInfo(const InvokeInst *I,
const Location &Loc) {
return getModRefInfo(ImmutableCallSite(I), Loc);
}
/// getModRefInfo (for invokes) - A convenience wrapper.
ModRefResult getModRefInfo(const InvokeInst *I,
const Value *P, uint64_t Size) {
return getModRefInfo(I, Location(P, Size));
}
/// getModRefInfo (for loads) - Return information about whether
/// a particular load modifies or reads the specified memory location.
ModRefResult getModRefInfo(const LoadInst *L, const Location &Loc);
/// getModRefInfo (for loads) - A convenience wrapper.
ModRefResult getModRefInfo(const LoadInst *L, const Value *P, uint64_t Size) {
return getModRefInfo(L, Location(P, Size));
}
/// getModRefInfo (for stores) - Return information about whether
/// a particular store modifies or reads the specified memory location.
ModRefResult getModRefInfo(const StoreInst *S, const Location &Loc);
/// getModRefInfo (for stores) - A convenience wrapper.
ModRefResult getModRefInfo(const StoreInst *S, const Value *P, uint64_t Size){
return getModRefInfo(S, Location(P, Size));
}
/// getModRefInfo (for fences) - Return information about whether
/// a particular store modifies or reads the specified memory location.
ModRefResult getModRefInfo(const FenceInst *S, const Location &Loc) {
// Conservatively correct. (We could possibly be a bit smarter if
// Loc is a alloca that doesn't escape.)
return ModRef;
}
/// getModRefInfo (for fences) - A convenience wrapper.
ModRefResult getModRefInfo(const FenceInst *S, const Value *P, uint64_t Size){
return getModRefInfo(S, Location(P, Size));
}
/// getModRefInfo (for cmpxchges) - Return information about whether
/// a particular cmpxchg modifies or reads the specified memory location.
ModRefResult getModRefInfo(const AtomicCmpXchgInst *CX, const Location &Loc);
/// getModRefInfo (for cmpxchges) - A convenience wrapper.
ModRefResult getModRefInfo(const AtomicCmpXchgInst *CX,
const Value *P, unsigned Size) {
return getModRefInfo(CX, Location(P, Size));
}
/// getModRefInfo (for atomicrmws) - Return information about whether
/// a particular atomicrmw modifies or reads the specified memory location.
ModRefResult getModRefInfo(const AtomicRMWInst *RMW, const Location &Loc);
/// getModRefInfo (for atomicrmws) - A convenience wrapper.
ModRefResult getModRefInfo(const AtomicRMWInst *RMW,
const Value *P, unsigned Size) {
return getModRefInfo(RMW, Location(P, Size));
}
/// getModRefInfo (for va_args) - Return information about whether
/// a particular va_arg modifies or reads the specified memory location.
ModRefResult getModRefInfo(const VAArgInst* I, const Location &Loc);
/// getModRefInfo (for va_args) - A convenience wrapper.
ModRefResult getModRefInfo(const VAArgInst* I, const Value* P, uint64_t Size){
return getModRefInfo(I, Location(P, Size));
}
/// getModRefInfo - Return information about whether two call sites may refer
/// to the same set of memory locations. See
/// http://llvm.org/docs/AliasAnalysis.html#ModRefInfo
/// for details.
virtual ModRefResult getModRefInfo(ImmutableCallSite CS1,
ImmutableCallSite CS2);
/// callCapturesBefore - Return information about whether a particular call
/// site modifies or reads the specified memory location.
ModRefResult callCapturesBefore(const Instruction *I,
const AliasAnalysis::Location &MemLoc,
DominatorTree *DT);
/// callCapturesBefore - A convenience wrapper.
ModRefResult callCapturesBefore(const Instruction *I, const Value *P,
uint64_t Size, DominatorTree *DT) {
return callCapturesBefore(I, Location(P, Size), DT);
}
//===--------------------------------------------------------------------===//
/// Higher level methods for querying mod/ref information.
///
/// canBasicBlockModify - Return true if it is possible for execution of the
/// specified basic block to modify the value pointed to by Ptr.
bool canBasicBlockModify(const BasicBlock &BB, const Location &Loc);
/// canBasicBlockModify - A convenience wrapper.
bool canBasicBlockModify(const BasicBlock &BB, const Value *P, uint64_t Size){
return canBasicBlockModify(BB, Location(P, Size));
}
/// canInstructionRangeModify - Return true if it is possible for the
/// execution of the specified instructions to modify the value pointed to by
/// Ptr. The instructions to consider are all of the instructions in the
/// range of [I1,I2] INCLUSIVE. I1 and I2 must be in the same basic block.
bool canInstructionRangeModify(const Instruction &I1, const Instruction &I2,
const Location &Loc);
/// canInstructionRangeModify - A convenience wrapper.
bool canInstructionRangeModify(const Instruction &I1, const Instruction &I2,
const Value *Ptr, uint64_t Size) {
return canInstructionRangeModify(I1, I2, Location(Ptr, Size));
}
//===--------------------------------------------------------------------===//
/// Methods that clients should call when they transform the program to allow
/// alias analyses to update their internal data structures. Note that these
/// methods may be called on any instruction, regardless of whether or not
/// they have pointer-analysis implications.
///
/// deleteValue - This method should be called whenever an LLVM Value is
/// deleted from the program, for example when an instruction is found to be
/// redundant and is eliminated.
///
virtual void deleteValue(Value *V);
/// copyValue - This method should be used whenever a preexisting value in the
/// program is copied or cloned, introducing a new value. Note that analysis
/// implementations should tolerate clients that use this method to introduce
/// the same value multiple times: if the analysis already knows about a
/// value, it should ignore the request.
///
virtual void copyValue(Value *From, Value *To);
/// addEscapingUse - This method should be used whenever an escaping use is
/// added to a pointer value. Analysis implementations may either return
/// conservative responses for that value in the future, or may recompute
/// some or all internal state to continue providing precise responses.
///
/// Escaping uses are considered by anything _except_ the following:
/// - GEPs or bitcasts of the pointer
/// - Loads through the pointer
/// - Stores through (but not of) the pointer
virtual void addEscapingUse(Use &U);
/// replaceWithNewValue - This method is the obvious combination of the two
/// above, and it provided as a helper to simplify client code.
///
void replaceWithNewValue(Value *Old, Value *New) {
copyValue(Old, New);
deleteValue(Old);
}
};
// Specialize DenseMapInfo for Location.
template<>
struct DenseMapInfo<AliasAnalysis::Location> {
static inline AliasAnalysis::Location getEmptyKey() {
return
AliasAnalysis::Location(DenseMapInfo<const Value *>::getEmptyKey(),
0, 0);
}
static inline AliasAnalysis::Location getTombstoneKey() {
return
AliasAnalysis::Location(DenseMapInfo<const Value *>::getTombstoneKey(),
0, 0);
}
static unsigned getHashValue(const AliasAnalysis::Location &Val) {
return DenseMapInfo<const Value *>::getHashValue(Val.Ptr) ^
DenseMapInfo<uint64_t>::getHashValue(Val.Size) ^
DenseMapInfo<const MDNode *>::getHashValue(Val.TBAATag);
}
static bool isEqual(const AliasAnalysis::Location &LHS,
const AliasAnalysis::Location &RHS) {
return LHS.Ptr == RHS.Ptr &&
LHS.Size == RHS.Size &&
LHS.TBAATag == RHS.TBAATag;
}
};
/// isNoAliasCall - Return true if this pointer is returned by a noalias
/// function.
bool isNoAliasCall(const Value *V);
/// isIdentifiedObject - Return true if this pointer refers to a distinct and
/// identifiable object. This returns true for:
/// Global Variables and Functions (but not Global Aliases)
/// Allocas
/// ByVal and NoAlias Arguments
/// NoAlias returns (e.g. calls to malloc)
///
bool isIdentifiedObject(const Value *V);
} // End llvm namespace
#endif

View File

@@ -0,0 +1,437 @@
//===- llvm/Analysis/AliasSetTracker.h - Build Alias Sets -------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines two classes: AliasSetTracker and AliasSet. These interface
// are used to classify a collection of pointer references into a maximal number
// of disjoint sets. Each AliasSet object constructed by the AliasSetTracker
// object refers to memory disjoint from the other sets.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_ALIASSETTRACKER_H
#define LLVM_ANALYSIS_ALIASSETTRACKER_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/ilist.h"
#include "llvm/ADT/ilist_node.h"
#include "llvm/Support/ValueHandle.h"
#include <vector>
namespace llvm {
class AliasAnalysis;
class LoadInst;
class StoreInst;
class VAArgInst;
class AliasSetTracker;
class AliasSet;
class AliasSet : public ilist_node<AliasSet> {
friend class AliasSetTracker;
class PointerRec {
Value *Val; // The pointer this record corresponds to.
PointerRec **PrevInList, *NextInList;
AliasSet *AS;
uint64_t Size;
const MDNode *TBAAInfo;
public:
PointerRec(Value *V)
: Val(V), PrevInList(0), NextInList(0), AS(0), Size(0),
TBAAInfo(DenseMapInfo<const MDNode *>::getEmptyKey()) {}
Value *getValue() const { return Val; }
PointerRec *getNext() const { return NextInList; }
bool hasAliasSet() const { return AS != 0; }
PointerRec** setPrevInList(PointerRec **PIL) {
PrevInList = PIL;
return &NextInList;
}
void updateSizeAndTBAAInfo(uint64_t NewSize, const MDNode *NewTBAAInfo) {
if (NewSize > Size) Size = NewSize;
if (TBAAInfo == DenseMapInfo<const MDNode *>::getEmptyKey())
// We don't have a TBAAInfo yet. Set it to NewTBAAInfo.
TBAAInfo = NewTBAAInfo;
else if (TBAAInfo != NewTBAAInfo)
// NewTBAAInfo conflicts with TBAAInfo.
TBAAInfo = DenseMapInfo<const MDNode *>::getTombstoneKey();
}
uint64_t getSize() const { return Size; }
/// getTBAAInfo - Return the TBAAInfo, or null if there is no
/// information or conflicting information.
const MDNode *getTBAAInfo() const {
// If we have missing or conflicting TBAAInfo, return null.
if (TBAAInfo == DenseMapInfo<const MDNode *>::getEmptyKey() ||
TBAAInfo == DenseMapInfo<const MDNode *>::getTombstoneKey())
return 0;
return TBAAInfo;
}
AliasSet *getAliasSet(AliasSetTracker &AST) {
assert(AS && "No AliasSet yet!");
if (AS->Forward) {
AliasSet *OldAS = AS;
AS = OldAS->getForwardedTarget(AST);
AS->addRef();
OldAS->dropRef(AST);
}
return AS;
}
void setAliasSet(AliasSet *as) {
assert(AS == 0 && "Already have an alias set!");
AS = as;
}
void eraseFromList() {
if (NextInList) NextInList->PrevInList = PrevInList;
*PrevInList = NextInList;
if (AS->PtrListEnd == &NextInList) {
AS->PtrListEnd = PrevInList;
assert(*AS->PtrListEnd == 0 && "List not terminated right!");
}
delete this;
}
};
PointerRec *PtrList, **PtrListEnd; // Doubly linked list of nodes.
AliasSet *Forward; // Forwarding pointer.
// All instructions without a specific address in this alias set.
std::vector<AssertingVH<Instruction> > UnknownInsts;
// RefCount - Number of nodes pointing to this AliasSet plus the number of
// AliasSets forwarding to it.
unsigned RefCount : 28;
/// AccessType - Keep track of whether this alias set merely refers to the
/// locations of memory, whether it modifies the memory, or whether it does
/// both. The lattice goes from "NoModRef" to either Refs or Mods, then to
/// ModRef as necessary.
///
enum AccessType {
NoModRef = 0, Refs = 1, // Ref = bit 1
Mods = 2, ModRef = 3 // Mod = bit 2
};
unsigned AccessTy : 2;
/// AliasType - Keep track the relationships between the pointers in the set.
/// Lattice goes from MustAlias to MayAlias.
///
enum AliasType {
MustAlias = 0, MayAlias = 1
};
unsigned AliasTy : 1;
// Volatile - True if this alias set contains volatile loads or stores.
bool Volatile : 1;
void addRef() { ++RefCount; }
void dropRef(AliasSetTracker &AST) {
assert(RefCount >= 1 && "Invalid reference count detected!");
if (--RefCount == 0)
removeFromTracker(AST);
}
Instruction *getUnknownInst(unsigned i) const {
assert(i < UnknownInsts.size());
return UnknownInsts[i];
}
public:
/// Accessors...
bool isRef() const { return AccessTy & Refs; }
bool isMod() const { return AccessTy & Mods; }
bool isMustAlias() const { return AliasTy == MustAlias; }
bool isMayAlias() const { return AliasTy == MayAlias; }
// isVolatile - Return true if this alias set contains volatile loads or
// stores.
bool isVolatile() const { return Volatile; }
/// isForwardingAliasSet - Return true if this alias set should be ignored as
/// part of the AliasSetTracker object.
bool isForwardingAliasSet() const { return Forward; }
/// mergeSetIn - Merge the specified alias set into this alias set...
///
void mergeSetIn(AliasSet &AS, AliasSetTracker &AST);
// Alias Set iteration - Allow access to all of the pointer which are part of
// this alias set...
class iterator;
iterator begin() const { return iterator(PtrList); }
iterator end() const { return iterator(); }
bool empty() const { return PtrList == 0; }
void print(raw_ostream &OS) const;
void dump() const;
/// Define an iterator for alias sets... this is just a forward iterator.
class iterator : public std::iterator<std::forward_iterator_tag,
PointerRec, ptrdiff_t> {
PointerRec *CurNode;
public:
explicit iterator(PointerRec *CN = 0) : CurNode(CN) {}
bool operator==(const iterator& x) const {
return CurNode == x.CurNode;
}
bool operator!=(const iterator& x) const { return !operator==(x); }
const iterator &operator=(const iterator &I) {
CurNode = I.CurNode;
return *this;
}
value_type &operator*() const {
assert(CurNode && "Dereferencing AliasSet.end()!");
return *CurNode;
}
value_type *operator->() const { return &operator*(); }
Value *getPointer() const { return CurNode->getValue(); }
uint64_t getSize() const { return CurNode->getSize(); }
const MDNode *getTBAAInfo() const { return CurNode->getTBAAInfo(); }
iterator& operator++() { // Preincrement
assert(CurNode && "Advancing past AliasSet.end()!");
CurNode = CurNode->getNext();
return *this;
}
iterator operator++(int) { // Postincrement
iterator tmp = *this; ++*this; return tmp;
}
};
private:
// Can only be created by AliasSetTracker. Also, ilist creates one
// to serve as a sentinel.
friend struct ilist_sentinel_traits<AliasSet>;
AliasSet() : PtrList(0), PtrListEnd(&PtrList), Forward(0), RefCount(0),
AccessTy(NoModRef), AliasTy(MustAlias), Volatile(false) {
}
AliasSet(const AliasSet &AS) LLVM_DELETED_FUNCTION;
void operator=(const AliasSet &AS) LLVM_DELETED_FUNCTION;
PointerRec *getSomePointer() const {
return PtrList;
}
/// getForwardedTarget - Return the real alias set this represents. If this
/// has been merged with another set and is forwarding, return the ultimate
/// destination set. This also implements the union-find collapsing as well.
AliasSet *getForwardedTarget(AliasSetTracker &AST) {
if (!Forward) return this;
AliasSet *Dest = Forward->getForwardedTarget(AST);
if (Dest != Forward) {
Dest->addRef();
Forward->dropRef(AST);
Forward = Dest;
}
return Dest;
}
void removeFromTracker(AliasSetTracker &AST);
void addPointer(AliasSetTracker &AST, PointerRec &Entry, uint64_t Size,
const MDNode *TBAAInfo,
bool KnownMustAlias = false);
void addUnknownInst(Instruction *I, AliasAnalysis &AA);
void removeUnknownInst(Instruction *I) {
for (size_t i = 0, e = UnknownInsts.size(); i != e; ++i)
if (UnknownInsts[i] == I) {
UnknownInsts[i] = UnknownInsts.back();
UnknownInsts.pop_back();
--i; --e; // Revisit the moved entry.
}
}
void setVolatile() { Volatile = true; }
public:
/// aliasesPointer - Return true if the specified pointer "may" (or must)
/// alias one of the members in the set.
///
bool aliasesPointer(const Value *Ptr, uint64_t Size, const MDNode *TBAAInfo,
AliasAnalysis &AA) const;
bool aliasesUnknownInst(Instruction *Inst, AliasAnalysis &AA) const;
};
inline raw_ostream& operator<<(raw_ostream &OS, const AliasSet &AS) {
AS.print(OS);
return OS;
}
class AliasSetTracker {
/// CallbackVH - A CallbackVH to arrange for AliasSetTracker to be
/// notified whenever a Value is deleted.
class ASTCallbackVH : public CallbackVH {
AliasSetTracker *AST;
virtual void deleted();
virtual void allUsesReplacedWith(Value *);
public:
ASTCallbackVH(Value *V, AliasSetTracker *AST = 0);
ASTCallbackVH &operator=(Value *V);
};
/// ASTCallbackVHDenseMapInfo - Traits to tell DenseMap that tell us how to
/// compare and hash the value handle.
struct ASTCallbackVHDenseMapInfo : public DenseMapInfo<Value *> {};
AliasAnalysis &AA;
ilist<AliasSet> AliasSets;
typedef DenseMap<ASTCallbackVH, AliasSet::PointerRec*,
ASTCallbackVHDenseMapInfo>
PointerMapType;
// Map from pointers to their node
PointerMapType PointerMap;
public:
/// AliasSetTracker ctor - Create an empty collection of AliasSets, and use
/// the specified alias analysis object to disambiguate load and store
/// addresses.
explicit AliasSetTracker(AliasAnalysis &aa) : AA(aa) {}
~AliasSetTracker() { clear(); }
/// add methods - These methods are used to add different types of
/// instructions to the alias sets. Adding a new instruction can result in
/// one of three actions happening:
///
/// 1. If the instruction doesn't alias any other sets, create a new set.
/// 2. If the instruction aliases exactly one set, add it to the set
/// 3. If the instruction aliases multiple sets, merge the sets, and add
/// the instruction to the result.
///
/// These methods return true if inserting the instruction resulted in the
/// addition of a new alias set (i.e., the pointer did not alias anything).
///
bool add(Value *Ptr, uint64_t Size, const MDNode *TBAAInfo); // Add a location
bool add(LoadInst *LI);
bool add(StoreInst *SI);
bool add(VAArgInst *VAAI);
bool add(Instruction *I); // Dispatch to one of the other add methods...
void add(BasicBlock &BB); // Add all instructions in basic block
void add(const AliasSetTracker &AST); // Add alias relations from another AST
bool addUnknown(Instruction *I);
/// remove methods - These methods are used to remove all entries that might
/// be aliased by the specified instruction. These methods return true if any
/// alias sets were eliminated.
// Remove a location
bool remove(Value *Ptr, uint64_t Size, const MDNode *TBAAInfo);
bool remove(LoadInst *LI);
bool remove(StoreInst *SI);
bool remove(VAArgInst *VAAI);
bool remove(Instruction *I);
void remove(AliasSet &AS);
bool removeUnknown(Instruction *I);
void clear();
/// getAliasSets - Return the alias sets that are active.
///
const ilist<AliasSet> &getAliasSets() const { return AliasSets; }
/// getAliasSetForPointer - Return the alias set that the specified pointer
/// lives in. If the New argument is non-null, this method sets the value to
/// true if a new alias set is created to contain the pointer (because the
/// pointer didn't alias anything).
AliasSet &getAliasSetForPointer(Value *P, uint64_t Size,
const MDNode *TBAAInfo,
bool *New = 0);
/// getAliasSetForPointerIfExists - Return the alias set containing the
/// location specified if one exists, otherwise return null.
AliasSet *getAliasSetForPointerIfExists(Value *P, uint64_t Size,
const MDNode *TBAAInfo) {
return findAliasSetForPointer(P, Size, TBAAInfo);
}
/// containsPointer - Return true if the specified location is represented by
/// this alias set, false otherwise. This does not modify the AST object or
/// alias sets.
bool containsPointer(Value *P, uint64_t Size, const MDNode *TBAAInfo) const;
/// getAliasAnalysis - Return the underlying alias analysis object used by
/// this tracker.
AliasAnalysis &getAliasAnalysis() const { return AA; }
/// deleteValue method - This method is used to remove a pointer value from
/// the AliasSetTracker entirely. It should be used when an instruction is
/// deleted from the program to update the AST. If you don't use this, you
/// would have dangling pointers to deleted instructions.
///
void deleteValue(Value *PtrVal);
/// copyValue - This method should be used whenever a preexisting value in the
/// program is copied or cloned, introducing a new value. Note that it is ok
/// for clients that use this method to introduce the same value multiple
/// times: if the tracker already knows about a value, it will ignore the
/// request.
///
void copyValue(Value *From, Value *To);
typedef ilist<AliasSet>::iterator iterator;
typedef ilist<AliasSet>::const_iterator const_iterator;
const_iterator begin() const { return AliasSets.begin(); }
const_iterator end() const { return AliasSets.end(); }
iterator begin() { return AliasSets.begin(); }
iterator end() { return AliasSets.end(); }
void print(raw_ostream &OS) const;
void dump() const;
private:
friend class AliasSet;
void removeAliasSet(AliasSet *AS);
// getEntryFor - Just like operator[] on the map, except that it creates an
// entry for the pointer if it doesn't already exist.
AliasSet::PointerRec &getEntryFor(Value *V) {
AliasSet::PointerRec *&Entry = PointerMap[ASTCallbackVH(V, this)];
if (Entry == 0)
Entry = new AliasSet::PointerRec(V);
return *Entry;
}
AliasSet &addPointer(Value *P, uint64_t Size, const MDNode *TBAAInfo,
AliasSet::AccessType E,
bool &NewSet) {
NewSet = false;
AliasSet &AS = getAliasSetForPointer(P, Size, TBAAInfo, &NewSet);
AS.AccessTy |= E;
return AS;
}
AliasSet *findAliasSetForPointer(const Value *Ptr, uint64_t Size,
const MDNode *TBAAInfo);
AliasSet *findAliasSetForUnknownInst(Instruction *Inst);
};
inline raw_ostream& operator<<(raw_ostream &OS, const AliasSetTracker &AST) {
AST.print(OS);
return OS;
}
} // End llvm namespace
#endif

View File

@@ -0,0 +1,342 @@
//===---- BlockFrequencyImpl.h - Machine Block Frequency Implementation ---===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Shared implementation of BlockFrequency for IR and Machine Instructions.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_BLOCKFREQUENCYIMPL_H
#define LLVM_ANALYSIS_BLOCKFREQUENCYIMPL_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/Support/BlockFrequency.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <string>
#include <vector>
namespace llvm {
class BlockFrequencyInfo;
class MachineBlockFrequencyInfo;
/// BlockFrequencyImpl implements block frequency algorithm for IR and
/// Machine Instructions. Algorithm starts with value 1024 (START_FREQ)
/// for the entry block and then propagates frequencies using branch weights
/// from (Machine)BranchProbabilityInfo. LoopInfo is not required because
/// algorithm can find "backedges" by itself.
template<class BlockT, class FunctionT, class BlockProbInfoT>
class BlockFrequencyImpl {
DenseMap<const BlockT *, BlockFrequency> Freqs;
BlockProbInfoT *BPI;
FunctionT *Fn;
typedef GraphTraits< Inverse<BlockT *> > GT;
const uint32_t EntryFreq;
std::string getBlockName(BasicBlock *BB) const {
return BB->getName().str();
}
std::string getBlockName(MachineBasicBlock *MBB) const {
std::string str;
raw_string_ostream ss(str);
ss << "BB#" << MBB->getNumber();
if (const BasicBlock *BB = MBB->getBasicBlock())
ss << " derived from LLVM BB " << BB->getName();
return ss.str();
}
void setBlockFreq(BlockT *BB, BlockFrequency Freq) {
Freqs[BB] = Freq;
DEBUG(dbgs() << "Frequency(" << getBlockName(BB) << ") = " << Freq << "\n");
}
/// getEdgeFreq - Return edge frequency based on SRC frequency and Src -> Dst
/// edge probability.
BlockFrequency getEdgeFreq(BlockT *Src, BlockT *Dst) const {
BranchProbability Prob = BPI->getEdgeProbability(Src, Dst);
return getBlockFreq(Src) * Prob;
}
/// incBlockFreq - Increase BB block frequency by FREQ.
///
void incBlockFreq(BlockT *BB, BlockFrequency Freq) {
Freqs[BB] += Freq;
DEBUG(dbgs() << "Frequency(" << getBlockName(BB) << ") += " << Freq
<< " --> " << Freqs[BB] << "\n");
}
/// divBlockFreq - Divide BB block frequency by PROB. If Prob = 0 do nothing.
///
void divBlockFreq(BlockT *BB, BranchProbability Prob) {
uint64_t N = Prob.getNumerator();
assert(N && "Illegal division by zero!");
uint64_t D = Prob.getDenominator();
uint64_t Freq = (Freqs[BB].getFrequency() * D) / N;
// Should we assert it?
if (Freq > UINT32_MAX)
Freq = UINT32_MAX;
Freqs[BB] = BlockFrequency(Freq);
DEBUG(dbgs() << "Frequency(" << getBlockName(BB) << ") /= (" << Prob
<< ") --> " << Freqs[BB] << "\n");
}
// All blocks in postorder.
std::vector<BlockT *> POT;
// Map Block -> Position in reverse-postorder list.
DenseMap<BlockT *, unsigned> RPO;
// Cycle Probability for each bloch.
DenseMap<BlockT *, uint32_t> CycleProb;
// (reverse-)postorder traversal iterators.
typedef typename std::vector<BlockT *>::iterator pot_iterator;
typedef typename std::vector<BlockT *>::reverse_iterator rpot_iterator;
pot_iterator pot_begin() { return POT.begin(); }
pot_iterator pot_end() { return POT.end(); }
rpot_iterator rpot_begin() { return POT.rbegin(); }
rpot_iterator rpot_end() { return POT.rend(); }
rpot_iterator rpot_at(BlockT *BB) {
rpot_iterator I = rpot_begin();
unsigned idx = RPO[BB];
assert(idx);
std::advance(I, idx - 1);
assert(*I == BB);
return I;
}
/// isReachable - Returns if BB block is reachable from the entry.
///
bool isReachable(BlockT *BB) {
return RPO.count(BB);
}
/// isBackedge - Return if edge Src -> Dst is a backedge.
///
bool isBackedge(BlockT *Src, BlockT *Dst) {
assert(isReachable(Src));
assert(isReachable(Dst));
unsigned a = RPO[Src];
unsigned b = RPO[Dst];
return a >= b;
}
/// getSingleBlockPred - return single BB block predecessor or NULL if
/// BB has none or more predecessors.
BlockT *getSingleBlockPred(BlockT *BB) {
typename GT::ChildIteratorType
PI = GraphTraits< Inverse<BlockT *> >::child_begin(BB),
PE = GraphTraits< Inverse<BlockT *> >::child_end(BB);
if (PI == PE)
return 0;
BlockT *Pred = *PI;
++PI;
if (PI != PE)
return 0;
return Pred;
}
void doBlock(BlockT *BB, BlockT *LoopHead,
SmallPtrSet<BlockT *, 8> &BlocksInLoop) {
DEBUG(dbgs() << "doBlock(" << getBlockName(BB) << ")\n");
setBlockFreq(BB, 0);
if (BB == LoopHead) {
setBlockFreq(BB, EntryFreq);
return;
}
if(BlockT *Pred = getSingleBlockPred(BB)) {
if (BlocksInLoop.count(Pred))
setBlockFreq(BB, getEdgeFreq(Pred, BB));
// TODO: else? irreducible, ignore it for now.
return;
}
bool isInLoop = false;
bool isLoopHead = false;
for (typename GT::ChildIteratorType
PI = GraphTraits< Inverse<BlockT *> >::child_begin(BB),
PE = GraphTraits< Inverse<BlockT *> >::child_end(BB);
PI != PE; ++PI) {
BlockT *Pred = *PI;
if (isReachable(Pred) && isBackedge(Pred, BB)) {
isLoopHead = true;
} else if (BlocksInLoop.count(Pred)) {
incBlockFreq(BB, getEdgeFreq(Pred, BB));
isInLoop = true;
}
// TODO: else? irreducible.
}
if (!isInLoop)
return;
if (!isLoopHead)
return;
assert(EntryFreq >= CycleProb[BB]);
uint32_t CProb = CycleProb[BB];
uint32_t Numerator = EntryFreq - CProb ? EntryFreq - CProb : 1;
divBlockFreq(BB, BranchProbability(Numerator, EntryFreq));
}
/// doLoop - Propagate block frequency down through the loop.
void doLoop(BlockT *Head, BlockT *Tail) {
DEBUG(dbgs() << "doLoop(" << getBlockName(Head) << ", "
<< getBlockName(Tail) << ")\n");
SmallPtrSet<BlockT *, 8> BlocksInLoop;
for (rpot_iterator I = rpot_at(Head), E = rpot_at(Tail); ; ++I) {
BlockT *BB = *I;
doBlock(BB, Head, BlocksInLoop);
BlocksInLoop.insert(BB);
if (I == E)
break;
}
// Compute loop's cyclic probability using backedges probabilities.
for (typename GT::ChildIteratorType
PI = GraphTraits< Inverse<BlockT *> >::child_begin(Head),
PE = GraphTraits< Inverse<BlockT *> >::child_end(Head);
PI != PE; ++PI) {
BlockT *Pred = *PI;
assert(Pred);
if (isReachable(Pred) && isBackedge(Pred, Head)) {
uint64_t N = getEdgeFreq(Pred, Head).getFrequency();
uint64_t D = getBlockFreq(Head).getFrequency();
assert(N <= EntryFreq && "Backedge frequency must be <= EntryFreq!");
uint64_t Res = (N * EntryFreq) / D;
assert(Res <= UINT32_MAX);
CycleProb[Head] += (uint32_t) Res;
DEBUG(dbgs() << " CycleProb[" << getBlockName(Head) << "] += " << Res
<< " --> " << CycleProb[Head] << "\n");
}
}
}
friend class BlockFrequencyInfo;
friend class MachineBlockFrequencyInfo;
BlockFrequencyImpl() : EntryFreq(BlockFrequency::getEntryFrequency()) { }
void doFunction(FunctionT *fn, BlockProbInfoT *bpi) {
Fn = fn;
BPI = bpi;
// Clear everything.
RPO.clear();
POT.clear();
CycleProb.clear();
Freqs.clear();
BlockT *EntryBlock = fn->begin();
std::copy(po_begin(EntryBlock), po_end(EntryBlock), std::back_inserter(POT));
unsigned RPOidx = 0;
for (rpot_iterator I = rpot_begin(), E = rpot_end(); I != E; ++I) {
BlockT *BB = *I;
RPO[BB] = ++RPOidx;
DEBUG(dbgs() << "RPO[" << getBlockName(BB) << "] = " << RPO[BB] << "\n");
}
// Travel over all blocks in postorder.
for (pot_iterator I = pot_begin(), E = pot_end(); I != E; ++I) {
BlockT *BB = *I;
BlockT *LastTail = 0;
DEBUG(dbgs() << "POT: " << getBlockName(BB) << "\n");
for (typename GT::ChildIteratorType
PI = GraphTraits< Inverse<BlockT *> >::child_begin(BB),
PE = GraphTraits< Inverse<BlockT *> >::child_end(BB);
PI != PE; ++PI) {
BlockT *Pred = *PI;
if (isReachable(Pred) && isBackedge(Pred, BB)
&& (!LastTail || RPO[Pred] > RPO[LastTail]))
LastTail = Pred;
}
if (LastTail)
doLoop(BB, LastTail);
}
// At the end assume the whole function as a loop, and travel over it once
// again.
doLoop(*(rpot_begin()), *(pot_begin()));
}
public:
/// getBlockFreq - Return block frequency. Return 0 if we don't have it.
BlockFrequency getBlockFreq(const BlockT *BB) const {
typename DenseMap<const BlockT *, BlockFrequency>::const_iterator
I = Freqs.find(BB);
if (I != Freqs.end())
return I->second;
return 0;
}
void print(raw_ostream &OS) const {
OS << "\n\n---- Block Freqs ----\n";
for (typename FunctionT::iterator I = Fn->begin(), E = Fn->end(); I != E;) {
BlockT *BB = I++;
OS << " " << getBlockName(BB) << " = " << getBlockFreq(BB) << "\n";
for (typename GraphTraits<BlockT *>::ChildIteratorType
SI = GraphTraits<BlockT *>::child_begin(BB),
SE = GraphTraits<BlockT *>::child_end(BB); SI != SE; ++SI) {
BlockT *Succ = *SI;
OS << " " << getBlockName(BB) << " -> " << getBlockName(Succ)
<< " = " << getEdgeFreq(BB, Succ) << "\n";
}
}
}
void dump() const {
print(dbgs());
}
};
}
#endif

View File

@@ -0,0 +1,55 @@
//========-------- BlockFrequencyInfo.h - Block Frequency Analysis -------========//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Loops should be simplified before this analysis.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_BLOCKFREQUENCYINFO_H
#define LLVM_ANALYSIS_BLOCKFREQUENCYINFO_H
#include "llvm/Pass.h"
#include "llvm/Support/BlockFrequency.h"
#include <climits>
namespace llvm {
class BranchProbabilityInfo;
template<class BlockT, class FunctionT, class BranchProbInfoT>
class BlockFrequencyImpl;
/// BlockFrequencyInfo pass uses BlockFrequencyImpl implementation to estimate
/// IR basic block frequencies.
class BlockFrequencyInfo : public FunctionPass {
BlockFrequencyImpl<BasicBlock, Function, BranchProbabilityInfo> *BFI;
public:
static char ID;
BlockFrequencyInfo();
~BlockFrequencyInfo();
void getAnalysisUsage(AnalysisUsage &AU) const;
bool runOnFunction(Function &F);
void print(raw_ostream &O, const Module *M) const;
/// getblockFreq - Return block frequency. Return 0 if we don't have the
/// information. Please note that initial frequency is equal to 1024. It means
/// that we should not rely on the value itself, but only on the comparison to
/// the other block frequencies. We do this to avoid using of floating points.
///
BlockFrequency getBlockFreq(const BasicBlock *BB) const;
};
}
#endif

View File

@@ -0,0 +1,148 @@
//===--- BranchProbabilityInfo.h - Branch Probability Analysis --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass is used to evaluate branch probabilties.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_BRANCHPROBABILITYINFO_H
#define LLVM_ANALYSIS_BRANCHPROBABILITYINFO_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/BranchProbability.h"
namespace llvm {
class LoopInfo;
class raw_ostream;
/// \brief Analysis pass providing branch probability information.
///
/// This is a function analysis pass which provides information on the relative
/// probabilities of each "edge" in the function's CFG where such an edge is
/// defined by a pair (PredBlock and an index in the successors). The
/// probability of an edge from one block is always relative to the
/// probabilities of other edges from the block. The probabilites of all edges
/// from a block sum to exactly one (100%).
/// We use a pair (PredBlock and an index in the successors) to uniquely
/// identify an edge, since we can have multiple edges from Src to Dst.
/// As an example, we can have a switch which jumps to Dst with value 0 and
/// value 10.
class BranchProbabilityInfo : public FunctionPass {
public:
static char ID;
BranchProbabilityInfo() : FunctionPass(ID) {
initializeBranchProbabilityInfoPass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const;
bool runOnFunction(Function &F);
void print(raw_ostream &OS, const Module *M = 0) const;
/// \brief Get an edge's probability, relative to other out-edges of the Src.
///
/// This routine provides access to the fractional probability between zero
/// (0%) and one (100%) of this edge executing, relative to other edges
/// leaving the 'Src' block. The returned probability is never zero, and can
/// only be one if the source block has only one successor.
BranchProbability getEdgeProbability(const BasicBlock *Src,
unsigned IndexInSuccessors) const;
/// \brief Get the probability of going from Src to Dst.
///
/// It returns the sum of all probabilities for edges from Src to Dst.
BranchProbability getEdgeProbability(const BasicBlock *Src,
const BasicBlock *Dst) const;
/// \brief Test if an edge is hot relative to other out-edges of the Src.
///
/// Check whether this edge out of the source block is 'hot'. We define hot
/// as having a relative probability >= 80%.
bool isEdgeHot(const BasicBlock *Src, const BasicBlock *Dst) const;
/// \brief Retrieve the hot successor of a block if one exists.
///
/// Given a basic block, look through its successors and if one exists for
/// which \see isEdgeHot would return true, return that successor block.
BasicBlock *getHotSucc(BasicBlock *BB) const;
/// \brief Print an edge's probability.
///
/// Retrieves an edge's probability similarly to \see getEdgeProbability, but
/// then prints that probability to the provided stream. That stream is then
/// returned.
raw_ostream &printEdgeProbability(raw_ostream &OS, const BasicBlock *Src,
const BasicBlock *Dst) const;
/// \brief Get the raw edge weight calculated for the edge.
///
/// This returns the raw edge weight. It is guaranteed to fall between 1 and
/// UINT32_MAX. Note that the raw edge weight is not meaningful in isolation.
/// This interface should be very carefully, and primarily by routines that
/// are updating the analysis by later calling setEdgeWeight.
uint32_t getEdgeWeight(const BasicBlock *Src,
unsigned IndexInSuccessors) const;
/// \brief Get the raw edge weight calculated for the block pair.
///
/// This returns the sum of all raw edge weights from Src to Dst.
/// It is guaranteed to fall between 1 and UINT32_MAX.
uint32_t getEdgeWeight(const BasicBlock *Src, const BasicBlock *Dst) const;
/// \brief Set the raw edge weight for a given edge.
///
/// This allows a pass to explicitly set the edge weight for an edge. It can
/// be used when updating the CFG to update and preserve the branch
/// probability information. Read the implementation of how these edge
/// weights are calculated carefully before using!
void setEdgeWeight(const BasicBlock *Src, unsigned IndexInSuccessors,
uint32_t Weight);
private:
// Since we allow duplicate edges from one basic block to another, we use
// a pair (PredBlock and an index in the successors) to specify an edge.
typedef std::pair<const BasicBlock *, unsigned> Edge;
// Default weight value. Used when we don't have information about the edge.
// TODO: DEFAULT_WEIGHT makes sense during static predication, when none of
// the successors have a weight yet. But it doesn't make sense when providing
// weight to an edge that may have siblings with non-zero weights. This can
// be handled various ways, but it's probably fine for an edge with unknown
// weight to just "inherit" the non-zero weight of an adjacent successor.
static const uint32_t DEFAULT_WEIGHT = 16;
DenseMap<Edge, uint32_t> Weights;
/// \brief Handle to the LoopInfo analysis.
LoopInfo *LI;
/// \brief Track the last function we run over for printing.
Function *LastF;
/// \brief Track the set of blocks directly succeeded by a returning block.
SmallPtrSet<BasicBlock *, 16> PostDominatedByUnreachable;
/// \brief Get sum of the block successors' weights.
uint32_t getSumForBlock(const BasicBlock *BB) const;
bool calcUnreachableHeuristics(BasicBlock *BB);
bool calcMetadataWeights(BasicBlock *BB);
bool calcPointerHeuristics(BasicBlock *BB);
bool calcLoopBranchHeuristics(BasicBlock *BB);
bool calcZeroHeuristics(BasicBlock *BB);
bool calcFloatingPointHeuristics(BasicBlock *BB);
bool calcInvokeHeuristics(BasicBlock *BB);
};
}
#endif

View File

@@ -0,0 +1,114 @@
//===-- CFGPrinter.h - CFG printer external interface -----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines external functions that can be called to explicitly
// instantiate the CFG printer.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_CFGPRINTER_H
#define LLVM_ANALYSIS_CFGPRINTER_H
#include "llvm/Assembly/Writer.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/GraphWriter.h"
namespace llvm {
template<>
struct DOTGraphTraits<const Function*> : public DefaultDOTGraphTraits {
DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
static std::string getGraphName(const Function *F) {
return "CFG for '" + F->getName().str() + "' function";
}
static std::string getSimpleNodeLabel(const BasicBlock *Node,
const Function *) {
if (!Node->getName().empty())
return Node->getName().str();
std::string Str;
raw_string_ostream OS(Str);
WriteAsOperand(OS, Node, false);
return OS.str();
}
static std::string getCompleteNodeLabel(const BasicBlock *Node,
const Function *) {
std::string Str;
raw_string_ostream OS(Str);
if (Node->getName().empty()) {
WriteAsOperand(OS, Node, false);
OS << ":";
}
OS << *Node;
std::string OutStr = OS.str();
if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
// Process string output to make it nicer...
for (unsigned i = 0; i != OutStr.length(); ++i)
if (OutStr[i] == '\n') { // Left justify
OutStr[i] = '\\';
OutStr.insert(OutStr.begin()+i+1, 'l');
} else if (OutStr[i] == ';') { // Delete comments!
unsigned Idx = OutStr.find('\n', i+1); // Find end of line
OutStr.erase(OutStr.begin()+i, OutStr.begin()+Idx);
--i;
}
return OutStr;
}
std::string getNodeLabel(const BasicBlock *Node,
const Function *Graph) {
if (isSimple())
return getSimpleNodeLabel(Node, Graph);
else
return getCompleteNodeLabel(Node, Graph);
}
static std::string getEdgeSourceLabel(const BasicBlock *Node,
succ_const_iterator I) {
// Label source of conditional branches with "T" or "F"
if (const BranchInst *BI = dyn_cast<BranchInst>(Node->getTerminator()))
if (BI->isConditional())
return (I == succ_begin(Node)) ? "T" : "F";
// Label source of switch edges with the associated value.
if (const SwitchInst *SI = dyn_cast<SwitchInst>(Node->getTerminator())) {
unsigned SuccNo = I.getSuccessorIndex();
if (SuccNo == 0) return "def";
std::string Str;
raw_string_ostream OS(Str);
SwitchInst::ConstCaseIt Case =
SwitchInst::ConstCaseIt::fromSuccessorIndex(SI, SuccNo);
OS << Case.getCaseValue()->getValue();
return OS.str();
}
return "";
}
};
} // End llvm namespace
namespace llvm {
class FunctionPass;
FunctionPass *createCFGPrinterPass ();
FunctionPass *createCFGOnlyPrinterPass ();
} // End llvm namespace
#endif

View File

@@ -0,0 +1,378 @@
//===- CallGraph.h - Build a Module's call graph ----------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This interface is used to build and manipulate a call graph, which is a very
// useful tool for interprocedural optimization.
//
// Every function in a module is represented as a node in the call graph. The
// callgraph node keeps track of which functions the are called by the function
// corresponding to the node.
//
// A call graph may contain nodes where the function that they correspond to is
// null. These 'external' nodes are used to represent control flow that is not
// represented (or analyzable) in the module. In particular, this analysis
// builds one external node such that:
// 1. All functions in the module without internal linkage will have edges
// from this external node, indicating that they could be called by
// functions outside of the module.
// 2. All functions whose address is used for something more than a direct
// call, for example being stored into a memory location will also have an
// edge from this external node. Since they may be called by an unknown
// caller later, they must be tracked as such.
//
// There is a second external node added for calls that leave this module.
// Functions have a call edge to the external node iff:
// 1. The function is external, reflecting the fact that they could call
// anything without internal linkage or that has its address taken.
// 2. The function contains an indirect function call.
//
// As an extension in the future, there may be multiple nodes with a null
// function. These will be used when we can prove (through pointer analysis)
// that an indirect call site can call only a specific set of functions.
//
// Because of these properties, the CallGraph captures a conservative superset
// of all of the caller-callee relationships, which is useful for
// transformations.
//
// The CallGraph class also attempts to figure out what the root of the
// CallGraph is, which it currently does by looking for a function named 'main'.
// If no function named 'main' is found, the external node is used as the entry
// node, reflecting the fact that any function without internal linkage could
// be called into (which is common for libraries).
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_CALLGRAPH_H
#define LLVM_ANALYSIS_CALLGRAPH_H
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/IR/Function.h"
#include "llvm/Pass.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/IncludeFile.h"
#include "llvm/Support/ValueHandle.h"
#include <map>
namespace llvm {
class Function;
class Module;
class CallGraphNode;
//===----------------------------------------------------------------------===//
// CallGraph class definition
//
class CallGraph {
protected:
Module *Mod; // The module this call graph represents
typedef std::map<const Function *, CallGraphNode *> FunctionMapTy;
FunctionMapTy FunctionMap; // Map from a function to its node
public:
static char ID; // Class identification, replacement for typeinfo
//===---------------------------------------------------------------------
// Accessors.
//
typedef FunctionMapTy::iterator iterator;
typedef FunctionMapTy::const_iterator const_iterator;
/// getModule - Return the module the call graph corresponds to.
///
Module &getModule() const { return *Mod; }
inline iterator begin() { return FunctionMap.begin(); }
inline iterator end() { return FunctionMap.end(); }
inline const_iterator begin() const { return FunctionMap.begin(); }
inline const_iterator end() const { return FunctionMap.end(); }
// Subscripting operators, return the call graph node for the provided
// function
inline const CallGraphNode *operator[](const Function *F) const {
const_iterator I = FunctionMap.find(F);
assert(I != FunctionMap.end() && "Function not in callgraph!");
return I->second;
}
inline CallGraphNode *operator[](const Function *F) {
const_iterator I = FunctionMap.find(F);
assert(I != FunctionMap.end() && "Function not in callgraph!");
return I->second;
}
/// Returns the CallGraphNode which is used to represent undetermined calls
/// into the callgraph. Override this if you want behavioral inheritance.
virtual CallGraphNode* getExternalCallingNode() const { return 0; }
virtual CallGraphNode* getCallsExternalNode() const { return 0; }
/// Return the root/main method in the module, or some other root node, such
/// as the externalcallingnode. Overload these if you behavioral
/// inheritance.
virtual CallGraphNode* getRoot() { return 0; }
virtual const CallGraphNode* getRoot() const { return 0; }
//===---------------------------------------------------------------------
// Functions to keep a call graph up to date with a function that has been
// modified.
//
/// removeFunctionFromModule - Unlink the function from this module, returning
/// it. Because this removes the function from the module, the call graph
/// node is destroyed. This is only valid if the function does not call any
/// other functions (ie, there are no edges in it's CGN). The easiest way to
/// do this is to dropAllReferences before calling this.
///
Function *removeFunctionFromModule(CallGraphNode *CGN);
Function *removeFunctionFromModule(Function *F) {
return removeFunctionFromModule((*this)[F]);
}
/// getOrInsertFunction - This method is identical to calling operator[], but
/// it will insert a new CallGraphNode for the specified function if one does
/// not already exist.
CallGraphNode *getOrInsertFunction(const Function *F);
/// spliceFunction - Replace the function represented by this node by another.
/// This does not rescan the body of the function, so it is suitable when
/// splicing the body of one function to another while also updating all
/// callers from the old function to the new.
///
void spliceFunction(const Function *From, const Function *To);
//===---------------------------------------------------------------------
// Pass infrastructure interface glue code.
//
protected:
CallGraph() {}
public:
virtual ~CallGraph() { destroy(); }
/// initialize - Call this method before calling other methods,
/// re/initializes the state of the CallGraph.
///
void initialize(Module &M);
void print(raw_ostream &o, Module *) const;
void dump() const;
protected:
// destroy - Release memory for the call graph
virtual void destroy();
};
//===----------------------------------------------------------------------===//
// CallGraphNode class definition.
//
class CallGraphNode {
friend class CallGraph;
AssertingVH<Function> F;
// CallRecord - This is a pair of the calling instruction (a call or invoke)
// and the callgraph node being called.
public:
typedef std::pair<WeakVH, CallGraphNode*> CallRecord;
private:
std::vector<CallRecord> CalledFunctions;
/// NumReferences - This is the number of times that this CallGraphNode occurs
/// in the CalledFunctions array of this or other CallGraphNodes.
unsigned NumReferences;
CallGraphNode(const CallGraphNode &) LLVM_DELETED_FUNCTION;
void operator=(const CallGraphNode &) LLVM_DELETED_FUNCTION;
void DropRef() { --NumReferences; }
void AddRef() { ++NumReferences; }
public:
typedef std::vector<CallRecord> CalledFunctionsVector;
// CallGraphNode ctor - Create a node for the specified function.
inline CallGraphNode(Function *f) : F(f), NumReferences(0) {}
~CallGraphNode() {
assert(NumReferences == 0 && "Node deleted while references remain");
}
//===---------------------------------------------------------------------
// Accessor methods.
//
typedef std::vector<CallRecord>::iterator iterator;
typedef std::vector<CallRecord>::const_iterator const_iterator;
// getFunction - Return the function that this call graph node represents.
Function *getFunction() const { return F; }
inline iterator begin() { return CalledFunctions.begin(); }
inline iterator end() { return CalledFunctions.end(); }
inline const_iterator begin() const { return CalledFunctions.begin(); }
inline const_iterator end() const { return CalledFunctions.end(); }
inline bool empty() const { return CalledFunctions.empty(); }
inline unsigned size() const { return (unsigned)CalledFunctions.size(); }
/// getNumReferences - Return the number of other CallGraphNodes in this
/// CallGraph that reference this node in their callee list.
unsigned getNumReferences() const { return NumReferences; }
// Subscripting operator - Return the i'th called function.
//
CallGraphNode *operator[](unsigned i) const {
assert(i < CalledFunctions.size() && "Invalid index");
return CalledFunctions[i].second;
}
/// dump - Print out this call graph node.
///
void dump() const;
void print(raw_ostream &OS) const;
//===---------------------------------------------------------------------
// Methods to keep a call graph up to date with a function that has been
// modified
//
/// removeAllCalledFunctions - As the name implies, this removes all edges
/// from this CallGraphNode to any functions it calls.
void removeAllCalledFunctions() {
while (!CalledFunctions.empty()) {
CalledFunctions.back().second->DropRef();
CalledFunctions.pop_back();
}
}
/// stealCalledFunctionsFrom - Move all the callee information from N to this
/// node.
void stealCalledFunctionsFrom(CallGraphNode *N) {
assert(CalledFunctions.empty() &&
"Cannot steal callsite information if I already have some");
std::swap(CalledFunctions, N->CalledFunctions);
}
/// addCalledFunction - Add a function to the list of functions called by this
/// one.
void addCalledFunction(CallSite CS, CallGraphNode *M) {
assert(!CS.getInstruction() ||
!CS.getCalledFunction() ||
!CS.getCalledFunction()->isIntrinsic());
CalledFunctions.push_back(std::make_pair(CS.getInstruction(), M));
M->AddRef();
}
void removeCallEdge(iterator I) {
I->second->DropRef();
*I = CalledFunctions.back();
CalledFunctions.pop_back();
}
/// removeCallEdgeFor - This method removes the edge in the node for the
/// specified call site. Note that this method takes linear time, so it
/// should be used sparingly.
void removeCallEdgeFor(CallSite CS);
/// removeAnyCallEdgeTo - This method removes all call edges from this node
/// to the specified callee function. This takes more time to execute than
/// removeCallEdgeTo, so it should not be used unless necessary.
void removeAnyCallEdgeTo(CallGraphNode *Callee);
/// removeOneAbstractEdgeTo - Remove one edge associated with a null callsite
/// from this node to the specified callee function.
void removeOneAbstractEdgeTo(CallGraphNode *Callee);
/// replaceCallEdge - This method replaces the edge in the node for the
/// specified call site with a new one. Note that this method takes linear
/// time, so it should be used sparingly.
void replaceCallEdge(CallSite CS, CallSite NewCS, CallGraphNode *NewNode);
/// allReferencesDropped - This is a special function that should only be
/// used by the CallGraph class.
void allReferencesDropped() {
NumReferences = 0;
}
};
//===----------------------------------------------------------------------===//
// GraphTraits specializations for call graphs so that they can be treated as
// graphs by the generic graph algorithms.
//
// Provide graph traits for tranversing call graphs using standard graph
// traversals.
template <> struct GraphTraits<CallGraphNode*> {
typedef CallGraphNode NodeType;
typedef CallGraphNode::CallRecord CGNPairTy;
typedef std::pointer_to_unary_function<CGNPairTy, CallGraphNode*> CGNDerefFun;
static NodeType *getEntryNode(CallGraphNode *CGN) { return CGN; }
typedef mapped_iterator<NodeType::iterator, CGNDerefFun> ChildIteratorType;
static inline ChildIteratorType child_begin(NodeType *N) {
return map_iterator(N->begin(), CGNDerefFun(CGNDeref));
}
static inline ChildIteratorType child_end (NodeType *N) {
return map_iterator(N->end(), CGNDerefFun(CGNDeref));
}
static CallGraphNode *CGNDeref(CGNPairTy P) {
return P.second;
}
};
template <> struct GraphTraits<const CallGraphNode*> {
typedef const CallGraphNode NodeType;
typedef NodeType::const_iterator ChildIteratorType;
static NodeType *getEntryNode(const CallGraphNode *CGN) { return CGN; }
static inline ChildIteratorType child_begin(NodeType *N) { return N->begin();}
static inline ChildIteratorType child_end (NodeType *N) { return N->end(); }
};
template<> struct GraphTraits<CallGraph*> : public GraphTraits<CallGraphNode*> {
static NodeType *getEntryNode(CallGraph *CGN) {
return CGN->getExternalCallingNode(); // Start at the external node!
}
typedef std::pair<const Function*, CallGraphNode*> PairTy;
typedef std::pointer_to_unary_function<PairTy, CallGraphNode&> DerefFun;
// nodes_iterator/begin/end - Allow iteration over all nodes in the graph
typedef mapped_iterator<CallGraph::iterator, DerefFun> nodes_iterator;
static nodes_iterator nodes_begin(CallGraph *CG) {
return map_iterator(CG->begin(), DerefFun(CGdereference));
}
static nodes_iterator nodes_end (CallGraph *CG) {
return map_iterator(CG->end(), DerefFun(CGdereference));
}
static CallGraphNode &CGdereference(PairTy P) {
return *P.second;
}
};
template<> struct GraphTraits<const CallGraph*> :
public GraphTraits<const CallGraphNode*> {
static NodeType *getEntryNode(const CallGraph *CGN) {
return CGN->getExternalCallingNode();
}
// nodes_iterator/begin/end - Allow iteration over all nodes in the graph
typedef CallGraph::const_iterator nodes_iterator;
static nodes_iterator nodes_begin(const CallGraph *CG) { return CG->begin(); }
static nodes_iterator nodes_end (const CallGraph *CG) { return CG->end(); }
};
} // End llvm namespace
// Make sure that any clients of this file link in CallGraph.cpp
FORCE_DEFINING_FILE_TO_BE_LINKED(CallGraph)
#endif

View File

@@ -0,0 +1,107 @@
//===- CallGraphSCCPass.h - Pass that operates BU on call graph -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the CallGraphSCCPass class, which is used for passes which
// are implemented as bottom-up traversals on the call graph. Because there may
// be cycles in the call graph, passes of this type operate on the call-graph in
// SCC order: that is, they process function bottom-up, except for recursive
// functions, which they process all at once.
//
// These passes are inherently interprocedural, and are required to keep the
// call graph up-to-date if they do anything which could modify it.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_CALLGRAPHSCCPASS_H
#define LLVM_ANALYSIS_CALLGRAPHSCCPASS_H
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Pass.h"
namespace llvm {
class CallGraphNode;
class CallGraph;
class PMStack;
class CallGraphSCC;
class CallGraphSCCPass : public Pass {
public:
explicit CallGraphSCCPass(char &pid) : Pass(PT_CallGraphSCC, pid) {}
/// createPrinterPass - Get a pass that prints the Module
/// corresponding to a CallGraph.
Pass *createPrinterPass(raw_ostream &O, const std::string &Banner) const;
using llvm::Pass::doInitialization;
using llvm::Pass::doFinalization;
/// doInitialization - This method is called before the SCC's of the program
/// has been processed, allowing the pass to do initialization as necessary.
virtual bool doInitialization(CallGraph &CG) {
return false;
}
/// runOnSCC - This method should be implemented by the subclass to perform
/// whatever action is necessary for the specified SCC. Note that
/// non-recursive (or only self-recursive) functions will have an SCC size of
/// 1, where recursive portions of the call graph will have SCC size > 1.
///
/// SCC passes that add or delete functions to the SCC are required to update
/// the SCC list, otherwise stale pointers may be dereferenced.
///
virtual bool runOnSCC(CallGraphSCC &SCC) = 0;
/// doFinalization - This method is called after the SCC's of the program has
/// been processed, allowing the pass to do final cleanup as necessary.
virtual bool doFinalization(CallGraph &CG) {
return false;
}
/// Assign pass manager to manager this pass
virtual void assignPassManager(PMStack &PMS,
PassManagerType PMT);
/// Return what kind of Pass Manager can manage this pass.
virtual PassManagerType getPotentialPassManagerType() const {
return PMT_CallGraphPassManager;
}
/// getAnalysisUsage - For this class, we declare that we require and preserve
/// the call graph. If the derived class implements this method, it should
/// always explicitly call the implementation here.
virtual void getAnalysisUsage(AnalysisUsage &Info) const;
};
/// CallGraphSCC - This is a single SCC that a CallGraphSCCPass is run on.
class CallGraphSCC {
void *Context; // The CGPassManager object that is vending this.
std::vector<CallGraphNode*> Nodes;
public:
CallGraphSCC(void *context) : Context(context) {}
void initialize(CallGraphNode*const*I, CallGraphNode*const*E) {
Nodes.assign(I, E);
}
bool isSingular() const { return Nodes.size() == 1; }
unsigned size() const { return Nodes.size(); }
/// ReplaceNode - This informs the SCC and the pass manager that the specified
/// Old node has been deleted, and New is to be used in its place.
void ReplaceNode(CallGraphNode *Old, CallGraphNode *New);
typedef std::vector<CallGraphNode*>::const_iterator iterator;
iterator begin() const { return Nodes.begin(); }
iterator end() const { return Nodes.end(); }
};
} // End llvm namespace
#endif

View File

@@ -0,0 +1,27 @@
//===-- CallPrinter.h - Call graph printer external interface ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines external functions that can be called to explicitly
// instantiate the call graph printer.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_CALLPRINTER_H
#define LLVM_ANALYSIS_CALLPRINTER_H
namespace llvm {
class ModulePass;
ModulePass *createCallGraphViewerPass();
ModulePass *createCallGraphPrinterPass();
} // end namespace llvm
#endif

View File

@@ -0,0 +1,62 @@
//===----- llvm/Analysis/CaptureTracking.h - Pointer capture ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains routines that help determine which pointers are captured.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_CAPTURETRACKING_H
#define LLVM_ANALYSIS_CAPTURETRACKING_H
namespace llvm {
class Value;
class Use;
/// PointerMayBeCaptured - Return true if this pointer value may be captured
/// by the enclosing function (which is required to exist). This routine can
/// be expensive, so consider caching the results. The boolean ReturnCaptures
/// specifies whether returning the value (or part of it) from the function
/// counts as capturing it or not. The boolean StoreCaptures specified
/// whether storing the value (or part of it) into memory anywhere
/// automatically counts as capturing it or not.
bool PointerMayBeCaptured(const Value *V,
bool ReturnCaptures,
bool StoreCaptures);
/// This callback is used in conjunction with PointerMayBeCaptured. In
/// addition to the interface here, you'll need to provide your own getters
/// to see whether anything was captured.
struct CaptureTracker {
virtual ~CaptureTracker();
/// tooManyUses - The depth of traversal has breached a limit. There may be
/// capturing instructions that will not be passed into captured().
virtual void tooManyUses() = 0;
/// shouldExplore - This is the use of a value derived from the pointer.
/// To prune the search (ie., assume that none of its users could possibly
/// capture) return false. To search it, return true.
///
/// U->getUser() is always an Instruction.
virtual bool shouldExplore(Use *U);
/// captured - Information about the pointer was captured by the user of
/// use U. Return true to stop the traversal or false to continue looking
/// for more capturing instructions.
virtual bool captured(Use *U) = 0;
};
/// PointerMayBeCaptured - Visit the value and the values derived from it and
/// find values which appear to be capturing the pointer value. This feeds
/// results into and is controlled by the CaptureTracker object.
void PointerMayBeCaptured(const Value *V, CaptureTracker *Tracker);
} // end namespace llvm
#endif

View File

@@ -0,0 +1,93 @@
//===- CodeMetrics.h - Code cost measurements -------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements various weight measurements for code, helping
// the Inliner and other passes decide whether to duplicate its contents.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_CODEMETRICS_H
#define LLVM_ANALYSIS_CODEMETRICS_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/Support/CallSite.h"
namespace llvm {
class BasicBlock;
class Function;
class Instruction;
class DataLayout;
class TargetTransformInfo;
class Value;
/// \brief Check whether a call will lower to something small.
///
/// This tests checks whether this callsite will lower to something
/// significantly cheaper than a traditional call, often a single
/// instruction. Note that if isInstructionFree(CS.getInstruction()) would
/// return true, so will this function.
bool callIsSmall(ImmutableCallSite CS);
/// \brief Utility to calculate the size and a few similar metrics for a set
/// of basic blocks.
struct CodeMetrics {
/// \brief True if this function contains a call to setjmp or other functions
/// with attribute "returns twice" without having the attribute itself.
bool exposesReturnsTwice;
/// \brief True if this function calls itself.
bool isRecursive;
/// \brief True if this function cannot be duplicated.
///
/// True if this function contains one or more indirect branches, or it contains
/// one or more 'noduplicate' instructions.
bool notDuplicatable;
/// \brief True if this function calls alloca (in the C sense).
bool usesDynamicAlloca;
/// \brief Number of instructions in the analyzed blocks.
unsigned NumInsts;
/// \brief Number of analyzed blocks.
unsigned NumBlocks;
/// \brief Keeps track of basic block code size estimates.
DenseMap<const BasicBlock *, unsigned> NumBBInsts;
/// \brief Keep track of the number of calls to 'big' functions.
unsigned NumCalls;
/// \brief The number of calls to internal functions with a single caller.
///
/// These are likely targets for future inlining, likely exposed by
/// interleaved devirtualization.
unsigned NumInlineCandidates;
/// \brief How many instructions produce vector values.
///
/// The inliner is more aggressive with inlining vector kernels.
unsigned NumVectorInsts;
/// \brief How many 'ret' instructions the blocks contain.
unsigned NumRets;
CodeMetrics()
: exposesReturnsTwice(false), isRecursive(false), notDuplicatable(false),
usesDynamicAlloca(false), NumInsts(0), NumBlocks(0), NumCalls(0),
NumInlineCandidates(0), NumVectorInsts(0), NumRets(0) {}
/// \brief Add information about a block to the current state.
void analyzeBasicBlock(const BasicBlock *BB, const TargetTransformInfo &TTI);
};
}
#endif

View File

@@ -0,0 +1,102 @@
//===-- ConstantFolding.h - Fold instructions into constants --------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares routines for folding instructions into constants when all
// operands are constants, for example "sub i32 1, 0" -> "1".
//
// Also, to supplement the basic VMCore ConstantExpr simplifications,
// this file declares some additional folding routines that can make use of
// DataLayout information. These functions cannot go in VMCore due to library
// dependency issues.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_CONSTANTFOLDING_H
#define LLVM_ANALYSIS_CONSTANTFOLDING_H
namespace llvm {
class Constant;
class ConstantExpr;
class Instruction;
class DataLayout;
class TargetLibraryInfo;
class Function;
class Type;
template<typename T>
class ArrayRef;
/// ConstantFoldInstruction - Try to constant fold the specified instruction.
/// If successful, the constant result is returned, if not, null is returned.
/// Note that this fails if not all of the operands are constant. Otherwise,
/// this function can only fail when attempting to fold instructions like loads
/// and stores, which have no constant expression form.
Constant *ConstantFoldInstruction(Instruction *I, const DataLayout *TD = 0,
const TargetLibraryInfo *TLI = 0);
/// ConstantFoldConstantExpression - Attempt to fold the constant expression
/// using the specified DataLayout. If successful, the constant result is
/// result is returned, if not, null is returned.
Constant *ConstantFoldConstantExpression(const ConstantExpr *CE,
const DataLayout *TD = 0,
const TargetLibraryInfo *TLI = 0);
/// ConstantFoldInstOperands - Attempt to constant fold an instruction with the
/// specified operands. If successful, the constant result is returned, if not,
/// null is returned. Note that this function can fail when attempting to
/// fold instructions like loads and stores, which have no constant expression
/// form.
///
Constant *ConstantFoldInstOperands(unsigned Opcode, Type *DestTy,
ArrayRef<Constant *> Ops,
const DataLayout *TD = 0,
const TargetLibraryInfo *TLI = 0);
/// ConstantFoldCompareInstOperands - Attempt to constant fold a compare
/// instruction (icmp/fcmp) with the specified operands. If it fails, it
/// returns a constant expression of the specified operands.
///
Constant *ConstantFoldCompareInstOperands(unsigned Predicate,
Constant *LHS, Constant *RHS,
const DataLayout *TD = 0,
const TargetLibraryInfo *TLI = 0);
/// ConstantFoldInsertValueInstruction - Attempt to constant fold an insertvalue
/// instruction with the specified operands and indices. The constant result is
/// returned if successful; if not, null is returned.
Constant *ConstantFoldInsertValueInstruction(Constant *Agg, Constant *Val,
ArrayRef<unsigned> Idxs);
/// ConstantFoldLoadFromConstPtr - Return the value that a load from C would
/// produce if it is constant and determinable. If this is not determinable,
/// return null.
Constant *ConstantFoldLoadFromConstPtr(Constant *C, const DataLayout *TD = 0);
/// ConstantFoldLoadThroughGEPConstantExpr - Given a constant and a
/// getelementptr constantexpr, return the constant value being addressed by the
/// constant expression, or null if something is funny and we can't decide.
Constant *ConstantFoldLoadThroughGEPConstantExpr(Constant *C, ConstantExpr *CE);
/// ConstantFoldLoadThroughGEPIndices - Given a constant and getelementptr
/// indices (with an *implied* zero pointer index that is not in the list),
/// return the constant value being addressed by a virtual load, or null if
/// something is funny and we can't decide.
Constant *ConstantFoldLoadThroughGEPIndices(Constant *C,
ArrayRef<Constant*> Indices);
/// canConstantFoldCallTo - Return true if its even possible to fold a call to
/// the specified function.
bool canConstantFoldCallTo(const Function *F);
/// ConstantFoldCall - Attempt to constant fold a call to the specified function
/// with the specified arguments, returning null if unsuccessful.
Constant *ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
const TargetLibraryInfo *TLI = 0);
}
#endif

View File

@@ -0,0 +1,93 @@
//==- llvm/Analysis/ConstantsScanner.h - Iterate over constants -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This class implements an iterator to walk through the constants referenced by
// a method. This is used by the Bitcode & Assembly writers to build constant
// pools.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_CONSTANTSSCANNER_H
#define LLVM_ANALYSIS_CONSTANTSSCANNER_H
#include "llvm/Support/InstIterator.h"
namespace llvm {
class Constant;
class constant_iterator : public std::iterator<std::forward_iterator_tag,
const Constant, ptrdiff_t> {
const_inst_iterator InstI; // Method instruction iterator
unsigned OpIdx; // Operand index
typedef constant_iterator _Self;
inline bool isAtConstant() const {
assert(!InstI.atEnd() && OpIdx < InstI->getNumOperands() &&
"isAtConstant called with invalid arguments!");
return isa<Constant>(InstI->getOperand(OpIdx));
}
public:
inline constant_iterator(const Function *F) : InstI(inst_begin(F)), OpIdx(0) {
// Advance to first constant... if we are not already at constant or end
if (InstI != inst_end(F) && // InstI is valid?
(InstI->getNumOperands() == 0 || !isAtConstant())) // Not at constant?
operator++();
}
inline constant_iterator(const Function *F, bool) // end ctor
: InstI(inst_end(F)), OpIdx(0) {
}
inline bool operator==(const _Self& x) const { return OpIdx == x.OpIdx &&
InstI == x.InstI; }
inline bool operator!=(const _Self& x) const { return !operator==(x); }
inline pointer operator*() const {
assert(isAtConstant() && "Dereferenced an iterator at the end!");
return cast<Constant>(InstI->getOperand(OpIdx));
}
inline pointer operator->() const { return operator*(); }
inline _Self& operator++() { // Preincrement implementation
++OpIdx;
do {
unsigned NumOperands = InstI->getNumOperands();
while (OpIdx < NumOperands && !isAtConstant()) {
++OpIdx;
}
if (OpIdx < NumOperands) return *this; // Found a constant!
++InstI;
OpIdx = 0;
} while (!InstI.atEnd());
return *this; // At the end of the method
}
inline _Self operator++(int) { // Postincrement
_Self tmp = *this; ++*this; return tmp;
}
inline bool atEnd() const { return InstI.atEnd(); }
};
inline constant_iterator constant_begin(const Function *F) {
return constant_iterator(F);
}
inline constant_iterator constant_end(const Function *F) {
return constant_iterator(F, true);
}
} // End llvm namespace
#endif

View File

@@ -0,0 +1,142 @@
//===-- DOTGraphTraitsPass.h - Print/View dotty graphs-----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Templates to create dotty viewer and printer passes for GraphTraits graphs.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_DOTGRAPHTRAITSPASS_H
#define LLVM_ANALYSIS_DOTGRAPHTRAITSPASS_H
#include "llvm/Analysis/CFGPrinter.h"
#include "llvm/Pass.h"
namespace llvm {
template <class Analysis, bool Simple>
class DOTGraphTraitsViewer : public FunctionPass {
public:
DOTGraphTraitsViewer(StringRef GraphName, char &ID)
: FunctionPass(ID), Name(GraphName) {}
virtual bool runOnFunction(Function &F) {
Analysis *Graph = &getAnalysis<Analysis>();
std::string GraphName = DOTGraphTraits<Analysis*>::getGraphName(Graph);
std::string Title = GraphName + " for '" + F.getName().str() + "' function";
ViewGraph(Graph, Name, Simple, Title);
return false;
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequired<Analysis>();
}
private:
std::string Name;
};
template <class Analysis, bool Simple>
class DOTGraphTraitsPrinter : public FunctionPass {
public:
DOTGraphTraitsPrinter(StringRef GraphName, char &ID)
: FunctionPass(ID), Name(GraphName) {}
virtual bool runOnFunction(Function &F) {
Analysis *Graph = &getAnalysis<Analysis>();
std::string Filename = Name + "." + F.getName().str() + ".dot";
std::string ErrorInfo;
errs() << "Writing '" << Filename << "'...";
raw_fd_ostream File(Filename.c_str(), ErrorInfo);
std::string GraphName = DOTGraphTraits<Analysis*>::getGraphName(Graph);
std::string Title = GraphName + " for '" + F.getName().str() + "' function";
if (ErrorInfo.empty())
WriteGraph(File, Graph, Simple, Title);
else
errs() << " error opening file for writing!";
errs() << "\n";
return false;
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequired<Analysis>();
}
private:
std::string Name;
};
template <class Analysis, bool Simple>
class DOTGraphTraitsModuleViewer : public ModulePass {
public:
DOTGraphTraitsModuleViewer(StringRef GraphName, char &ID)
: ModulePass(ID), Name(GraphName) {}
virtual bool runOnModule(Module &M) {
Analysis *Graph = &getAnalysis<Analysis>();
std::string Title = DOTGraphTraits<Analysis*>::getGraphName(Graph);
ViewGraph(Graph, Name, Simple, Title);
return false;
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequired<Analysis>();
}
private:
std::string Name;
};
template <class Analysis, bool Simple>
class DOTGraphTraitsModulePrinter : public ModulePass {
public:
DOTGraphTraitsModulePrinter(StringRef GraphName, char &ID)
: ModulePass(ID), Name(GraphName) {}
virtual bool runOnModule(Module &M) {
Analysis *Graph = &getAnalysis<Analysis>();
std::string Filename = Name + ".dot";
std::string ErrorInfo;
errs() << "Writing '" << Filename << "'...";
raw_fd_ostream File(Filename.c_str(), ErrorInfo);
std::string Title = DOTGraphTraits<Analysis*>::getGraphName(Graph);
if (ErrorInfo.empty())
WriteGraph(File, Graph, Simple, Title);
else
errs() << " error opening file for writing!";
errs() << "\n";
return false;
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequired<Analysis>();
}
private:
std::string Name;
};
} // end namespace llvm
#endif

View File

@@ -0,0 +1,895 @@
//===-- llvm/Analysis/DependenceAnalysis.h -------------------- -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// DependenceAnalysis is an LLVM pass that analyses dependences between memory
// accesses. Currently, it is an implementation of the approach described in
//
// Practical Dependence Testing
// Goff, Kennedy, Tseng
// PLDI 1991
//
// There's a single entry point that analyzes the dependence between a pair
// of memory references in a function, returning either NULL, for no dependence,
// or a more-or-less detailed description of the dependence between them.
//
// This pass exists to support the DependenceGraph pass. There are two separate
// passes because there's a useful separation of concerns. A dependence exists
// if two conditions are met:
//
// 1) Two instructions reference the same memory location, and
// 2) There is a flow of control leading from one instruction to the other.
//
// DependenceAnalysis attacks the first condition; DependenceGraph will attack
// the second (it's not yet ready).
//
// Please note that this is work in progress and the interface is subject to
// change.
//
// Plausible changes:
// Return a set of more precise dependences instead of just one dependence
// summarizing all.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_DEPENDENCEANALYSIS_H
#define LLVM_ANALYSIS_DEPENDENCEANALYSIS_H
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/IR/Instructions.h"
#include "llvm/Pass.h"
namespace llvm {
class AliasAnalysis;
class Loop;
class LoopInfo;
class ScalarEvolution;
class SCEV;
class SCEVConstant;
class raw_ostream;
/// Dependence - This class represents a dependence between two memory
/// memory references in a function. It contains minimal information and
/// is used in the very common situation where the compiler is unable to
/// determine anything beyond the existence of a dependence; that is, it
/// represents a confused dependence (see also FullDependence). In most
/// cases (for output, flow, and anti dependences), the dependence implies
/// an ordering, where the source must precede the destination; in contrast,
/// input dependences are unordered.
class Dependence {
public:
Dependence(Instruction *Source,
Instruction *Destination) :
Src(Source), Dst(Destination) {}
virtual ~Dependence() {}
/// Dependence::DVEntry - Each level in the distance/direction vector
/// has a direction (or perhaps a union of several directions), and
/// perhaps a distance.
struct DVEntry {
enum { NONE = 0,
LT = 1,
EQ = 2,
LE = 3,
GT = 4,
NE = 5,
GE = 6,
ALL = 7 };
unsigned char Direction : 3; // Init to ALL, then refine.
bool Scalar : 1; // Init to true.
bool PeelFirst : 1; // Peeling the first iteration will break dependence.
bool PeelLast : 1; // Peeling the last iteration will break the dependence.
bool Splitable : 1; // Splitting the loop will break dependence.
const SCEV *Distance; // NULL implies no distance available.
DVEntry() : Direction(ALL), Scalar(true), PeelFirst(false),
PeelLast(false), Splitable(false), Distance(NULL) { }
};
/// getSrc - Returns the source instruction for this dependence.
///
Instruction *getSrc() const { return Src; }
/// getDst - Returns the destination instruction for this dependence.
///
Instruction *getDst() const { return Dst; }
/// isInput - Returns true if this is an input dependence.
///
bool isInput() const;
/// isOutput - Returns true if this is an output dependence.
///
bool isOutput() const;
/// isFlow - Returns true if this is a flow (aka true) dependence.
///
bool isFlow() const;
/// isAnti - Returns true if this is an anti dependence.
///
bool isAnti() const;
/// isOrdered - Returns true if dependence is Output, Flow, or Anti
///
bool isOrdered() const { return isOutput() || isFlow() || isAnti(); }
/// isUnordered - Returns true if dependence is Input
///
bool isUnordered() const { return isInput(); }
/// isLoopIndependent - Returns true if this is a loop-independent
/// dependence.
virtual bool isLoopIndependent() const { return true; }
/// isConfused - Returns true if this dependence is confused
/// (the compiler understands nothing and makes worst-case
/// assumptions).
virtual bool isConfused() const { return true; }
/// isConsistent - Returns true if this dependence is consistent
/// (occurs every time the source and destination are executed).
virtual bool isConsistent() const { return false; }
/// getLevels - Returns the number of common loops surrounding the
/// source and destination of the dependence.
virtual unsigned getLevels() const { return 0; }
/// getDirection - Returns the direction associated with a particular
/// level.
virtual unsigned getDirection(unsigned Level) const { return DVEntry::ALL; }
/// getDistance - Returns the distance (or NULL) associated with a
/// particular level.
virtual const SCEV *getDistance(unsigned Level) const { return NULL; }
/// isPeelFirst - Returns true if peeling the first iteration from
/// this loop will break this dependence.
virtual bool isPeelFirst(unsigned Level) const { return false; }
/// isPeelLast - Returns true if peeling the last iteration from
/// this loop will break this dependence.
virtual bool isPeelLast(unsigned Level) const { return false; }
/// isSplitable - Returns true if splitting this loop will break
/// the dependence.
virtual bool isSplitable(unsigned Level) const { return false; }
/// isScalar - Returns true if a particular level is scalar; that is,
/// if no subscript in the source or destination mention the induction
/// variable associated with the loop at this level.
virtual bool isScalar(unsigned Level) const;
/// dump - For debugging purposes, dumps a dependence to OS.
///
void dump(raw_ostream &OS) const;
private:
Instruction *Src, *Dst;
friend class DependenceAnalysis;
};
/// FullDependence - This class represents a dependence between two memory
/// references in a function. It contains detailed information about the
/// dependence (direction vectors, etc.) and is used when the compiler is
/// able to accurately analyze the interaction of the references; that is,
/// it is not a confused dependence (see Dependence). In most cases
/// (for output, flow, and anti dependences), the dependence implies an
/// ordering, where the source must precede the destination; in contrast,
/// input dependences are unordered.
class FullDependence : public Dependence {
public:
FullDependence(Instruction *Src,
Instruction *Dst,
bool LoopIndependent,
unsigned Levels);
~FullDependence() {
delete[] DV;
}
/// isLoopIndependent - Returns true if this is a loop-independent
/// dependence.
bool isLoopIndependent() const { return LoopIndependent; }
/// isConfused - Returns true if this dependence is confused
/// (the compiler understands nothing and makes worst-case
/// assumptions).
bool isConfused() const { return false; }
/// isConsistent - Returns true if this dependence is consistent
/// (occurs every time the source and destination are executed).
bool isConsistent() const { return Consistent; }
/// getLevels - Returns the number of common loops surrounding the
/// source and destination of the dependence.
unsigned getLevels() const { return Levels; }
/// getDirection - Returns the direction associated with a particular
/// level.
unsigned getDirection(unsigned Level) const;
/// getDistance - Returns the distance (or NULL) associated with a
/// particular level.
const SCEV *getDistance(unsigned Level) const;
/// isPeelFirst - Returns true if peeling the first iteration from
/// this loop will break this dependence.
bool isPeelFirst(unsigned Level) const;
/// isPeelLast - Returns true if peeling the last iteration from
/// this loop will break this dependence.
bool isPeelLast(unsigned Level) const;
/// isSplitable - Returns true if splitting the loop will break
/// the dependence.
bool isSplitable(unsigned Level) const;
/// isScalar - Returns true if a particular level is scalar; that is,
/// if no subscript in the source or destination mention the induction
/// variable associated with the loop at this level.
bool isScalar(unsigned Level) const;
private:
unsigned short Levels;
bool LoopIndependent;
bool Consistent; // Init to true, then refine.
DVEntry *DV;
friend class DependenceAnalysis;
};
/// DependenceAnalysis - This class is the main dependence-analysis driver.
///
class DependenceAnalysis : public FunctionPass {
void operator=(const DependenceAnalysis &) LLVM_DELETED_FUNCTION;
DependenceAnalysis(const DependenceAnalysis &) LLVM_DELETED_FUNCTION;
public:
/// depends - Tests for a dependence between the Src and Dst instructions.
/// Returns NULL if no dependence; otherwise, returns a Dependence (or a
/// FullDependence) with as much information as can be gleaned.
/// The flag PossiblyLoopIndependent should be set by the caller
/// if it appears that control flow can reach from Src to Dst
/// without traversing a loop back edge.
Dependence *depends(Instruction *Src,
Instruction *Dst,
bool PossiblyLoopIndependent);
/// getSplitIteration - Give a dependence that's splittable at some
/// particular level, return the iteration that should be used to split
/// the loop.
///
/// Generally, the dependence analyzer will be used to build
/// a dependence graph for a function (basically a map from instructions
/// to dependences). Looking for cycles in the graph shows us loops
/// that cannot be trivially vectorized/parallelized.
///
/// We can try to improve the situation by examining all the dependences
/// that make up the cycle, looking for ones we can break.
/// Sometimes, peeling the first or last iteration of a loop will break
/// dependences, and there are flags for those possibilities.
/// Sometimes, splitting a loop at some other iteration will do the trick,
/// and we've got a flag for that case. Rather than waste the space to
/// record the exact iteration (since we rarely know), we provide
/// a method that calculates the iteration. It's a drag that it must work
/// from scratch, but wonderful in that it's possible.
///
/// Here's an example:
///
/// for (i = 0; i < 10; i++)
/// A[i] = ...
/// ... = A[11 - i]
///
/// There's a loop-carried flow dependence from the store to the load,
/// found by the weak-crossing SIV test. The dependence will have a flag,
/// indicating that the dependence can be broken by splitting the loop.
/// Calling getSplitIteration will return 5.
/// Splitting the loop breaks the dependence, like so:
///
/// for (i = 0; i <= 5; i++)
/// A[i] = ...
/// ... = A[11 - i]
/// for (i = 6; i < 10; i++)
/// A[i] = ...
/// ... = A[11 - i]
///
/// breaks the dependence and allows us to vectorize/parallelize
/// both loops.
const SCEV *getSplitIteration(const Dependence *Dep, unsigned Level);
private:
AliasAnalysis *AA;
ScalarEvolution *SE;
LoopInfo *LI;
Function *F;
/// Subscript - This private struct represents a pair of subscripts from
/// a pair of potentially multi-dimensional array references. We use a
/// vector of them to guide subscript partitioning.
struct Subscript {
const SCEV *Src;
const SCEV *Dst;
enum ClassificationKind { ZIV, SIV, RDIV, MIV, NonLinear } Classification;
SmallBitVector Loops;
SmallBitVector GroupLoops;
SmallBitVector Group;
};
struct CoefficientInfo {
const SCEV *Coeff;
const SCEV *PosPart;
const SCEV *NegPart;
const SCEV *Iterations;
};
struct BoundInfo {
const SCEV *Iterations;
const SCEV *Upper[8];
const SCEV *Lower[8];
unsigned char Direction;
unsigned char DirSet;
};
/// Constraint - This private class represents a constraint, as defined
/// in the paper
///
/// Practical Dependence Testing
/// Goff, Kennedy, Tseng
/// PLDI 1991
///
/// There are 5 kinds of constraint, in a hierarchy.
/// 1) Any - indicates no constraint, any dependence is possible.
/// 2) Line - A line ax + by = c, where a, b, and c are parameters,
/// representing the dependence equation.
/// 3) Distance - The value d of the dependence distance;
/// 4) Point - A point <x, y> representing the dependence from
/// iteration x to iteration y.
/// 5) Empty - No dependence is possible.
class Constraint {
private:
enum ConstraintKind { Empty, Point, Distance, Line, Any } Kind;
ScalarEvolution *SE;
const SCEV *A;
const SCEV *B;
const SCEV *C;
const Loop *AssociatedLoop;
public:
/// isEmpty - Return true if the constraint is of kind Empty.
bool isEmpty() const { return Kind == Empty; }
/// isPoint - Return true if the constraint is of kind Point.
bool isPoint() const { return Kind == Point; }
/// isDistance - Return true if the constraint is of kind Distance.
bool isDistance() const { return Kind == Distance; }
/// isLine - Return true if the constraint is of kind Line.
/// Since Distance's can also be represented as Lines, we also return
/// true if the constraint is of kind Distance.
bool isLine() const { return Kind == Line || Kind == Distance; }
/// isAny - Return true if the constraint is of kind Any;
bool isAny() const { return Kind == Any; }
/// getX - If constraint is a point <X, Y>, returns X.
/// Otherwise assert.
const SCEV *getX() const;
/// getY - If constraint is a point <X, Y>, returns Y.
/// Otherwise assert.
const SCEV *getY() const;
/// getA - If constraint is a line AX + BY = C, returns A.
/// Otherwise assert.
const SCEV *getA() const;
/// getB - If constraint is a line AX + BY = C, returns B.
/// Otherwise assert.
const SCEV *getB() const;
/// getC - If constraint is a line AX + BY = C, returns C.
/// Otherwise assert.
const SCEV *getC() const;
/// getD - If constraint is a distance, returns D.
/// Otherwise assert.
const SCEV *getD() const;
/// getAssociatedLoop - Returns the loop associated with this constraint.
const Loop *getAssociatedLoop() const;
/// setPoint - Change a constraint to Point.
void setPoint(const SCEV *X, const SCEV *Y, const Loop *CurrentLoop);
/// setLine - Change a constraint to Line.
void setLine(const SCEV *A, const SCEV *B,
const SCEV *C, const Loop *CurrentLoop);
/// setDistance - Change a constraint to Distance.
void setDistance(const SCEV *D, const Loop *CurrentLoop);
/// setEmpty - Change a constraint to Empty.
void setEmpty();
/// setAny - Change a constraint to Any.
void setAny(ScalarEvolution *SE);
/// dump - For debugging purposes. Dumps the constraint
/// out to OS.
void dump(raw_ostream &OS) const;
};
/// establishNestingLevels - Examines the loop nesting of the Src and Dst
/// instructions and establishes their shared loops. Sets the variables
/// CommonLevels, SrcLevels, and MaxLevels.
/// The source and destination instructions needn't be contained in the same
/// loop. The routine establishNestingLevels finds the level of most deeply
/// nested loop that contains them both, CommonLevels. An instruction that's
/// not contained in a loop is at level = 0. MaxLevels is equal to the level
/// of the source plus the level of the destination, minus CommonLevels.
/// This lets us allocate vectors MaxLevels in length, with room for every
/// distinct loop referenced in both the source and destination subscripts.
/// The variable SrcLevels is the nesting depth of the source instruction.
/// It's used to help calculate distinct loops referenced by the destination.
/// Here's the map from loops to levels:
/// 0 - unused
/// 1 - outermost common loop
/// ... - other common loops
/// CommonLevels - innermost common loop
/// ... - loops containing Src but not Dst
/// SrcLevels - innermost loop containing Src but not Dst
/// ... - loops containing Dst but not Src
/// MaxLevels - innermost loop containing Dst but not Src
/// Consider the follow code fragment:
/// for (a = ...) {
/// for (b = ...) {
/// for (c = ...) {
/// for (d = ...) {
/// A[] = ...;
/// }
/// }
/// for (e = ...) {
/// for (f = ...) {
/// for (g = ...) {
/// ... = A[];
/// }
/// }
/// }
/// }
/// }
/// If we're looking at the possibility of a dependence between the store
/// to A (the Src) and the load from A (the Dst), we'll note that they
/// have 2 loops in common, so CommonLevels will equal 2 and the direction
/// vector for Result will have 2 entries. SrcLevels = 4 and MaxLevels = 7.
/// A map from loop names to level indices would look like
/// a - 1
/// b - 2 = CommonLevels
/// c - 3
/// d - 4 = SrcLevels
/// e - 5
/// f - 6
/// g - 7 = MaxLevels
void establishNestingLevels(const Instruction *Src,
const Instruction *Dst);
unsigned CommonLevels, SrcLevels, MaxLevels;
/// mapSrcLoop - Given one of the loops containing the source, return
/// its level index in our numbering scheme.
unsigned mapSrcLoop(const Loop *SrcLoop) const;
/// mapDstLoop - Given one of the loops containing the destination,
/// return its level index in our numbering scheme.
unsigned mapDstLoop(const Loop *DstLoop) const;
/// isLoopInvariant - Returns true if Expression is loop invariant
/// in LoopNest.
bool isLoopInvariant(const SCEV *Expression, const Loop *LoopNest) const;
/// removeMatchingExtensions - Examines a subscript pair.
/// If the source and destination are identically sign (or zero)
/// extended, it strips off the extension in an effort to
/// simplify the actual analysis.
void removeMatchingExtensions(Subscript *Pair);
/// collectCommonLoops - Finds the set of loops from the LoopNest that
/// have a level <= CommonLevels and are referred to by the SCEV Expression.
void collectCommonLoops(const SCEV *Expression,
const Loop *LoopNest,
SmallBitVector &Loops) const;
/// checkSrcSubscript - Examines the SCEV Src, returning true iff it's
/// linear. Collect the set of loops mentioned by Src.
bool checkSrcSubscript(const SCEV *Src,
const Loop *LoopNest,
SmallBitVector &Loops);
/// checkDstSubscript - Examines the SCEV Dst, returning true iff it's
/// linear. Collect the set of loops mentioned by Dst.
bool checkDstSubscript(const SCEV *Dst,
const Loop *LoopNest,
SmallBitVector &Loops);
/// isKnownPredicate - Compare X and Y using the predicate Pred.
/// Basically a wrapper for SCEV::isKnownPredicate,
/// but tries harder, especially in the presence of sign and zero
/// extensions and symbolics.
bool isKnownPredicate(ICmpInst::Predicate Pred,
const SCEV *X,
const SCEV *Y) const;
/// collectUpperBound - All subscripts are the same type (on my machine,
/// an i64). The loop bound may be a smaller type. collectUpperBound
/// find the bound, if available, and zero extends it to the Type T.
/// (I zero extend since the bound should always be >= 0.)
/// If no upper bound is available, return NULL.
const SCEV *collectUpperBound(const Loop *l, Type *T) const;
/// collectConstantUpperBound - Calls collectUpperBound(), then
/// attempts to cast it to SCEVConstant. If the cast fails,
/// returns NULL.
const SCEVConstant *collectConstantUpperBound(const Loop *l, Type *T) const;
/// classifyPair - Examines the subscript pair (the Src and Dst SCEVs)
/// and classifies it as either ZIV, SIV, RDIV, MIV, or Nonlinear.
/// Collects the associated loops in a set.
Subscript::ClassificationKind classifyPair(const SCEV *Src,
const Loop *SrcLoopNest,
const SCEV *Dst,
const Loop *DstLoopNest,
SmallBitVector &Loops);
/// testZIV - Tests the ZIV subscript pair (Src and Dst) for dependence.
/// Returns true if any possible dependence is disproved.
/// If there might be a dependence, returns false.
/// If the dependence isn't proven to exist,
/// marks the Result as inconsistent.
bool testZIV(const SCEV *Src,
const SCEV *Dst,
FullDependence &Result) const;
/// testSIV - Tests the SIV subscript pair (Src and Dst) for dependence.
/// Things of the form [c1 + a1*i] and [c2 + a2*j], where
/// i and j are induction variables, c1 and c2 are loop invariant,
/// and a1 and a2 are constant.
/// Returns true if any possible dependence is disproved.
/// If there might be a dependence, returns false.
/// Sets appropriate direction vector entry and, when possible,
/// the distance vector entry.
/// If the dependence isn't proven to exist,
/// marks the Result as inconsistent.
bool testSIV(const SCEV *Src,
const SCEV *Dst,
unsigned &Level,
FullDependence &Result,
Constraint &NewConstraint,
const SCEV *&SplitIter) const;
/// testRDIV - Tests the RDIV subscript pair (Src and Dst) for dependence.
/// Things of the form [c1 + a1*i] and [c2 + a2*j]
/// where i and j are induction variables, c1 and c2 are loop invariant,
/// and a1 and a2 are constant.
/// With minor algebra, this test can also be used for things like
/// [c1 + a1*i + a2*j][c2].
/// Returns true if any possible dependence is disproved.
/// If there might be a dependence, returns false.
/// Marks the Result as inconsistent.
bool testRDIV(const SCEV *Src,
const SCEV *Dst,
FullDependence &Result) const;
/// testMIV - Tests the MIV subscript pair (Src and Dst) for dependence.
/// Returns true if dependence disproved.
/// Can sometimes refine direction vectors.
bool testMIV(const SCEV *Src,
const SCEV *Dst,
const SmallBitVector &Loops,
FullDependence &Result) const;
/// strongSIVtest - Tests the strong SIV subscript pair (Src and Dst)
/// for dependence.
/// Things of the form [c1 + a*i] and [c2 + a*i],
/// where i is an induction variable, c1 and c2 are loop invariant,
/// and a is a constant
/// Returns true if any possible dependence is disproved.
/// If there might be a dependence, returns false.
/// Sets appropriate direction and distance.
bool strongSIVtest(const SCEV *Coeff,
const SCEV *SrcConst,
const SCEV *DstConst,
const Loop *CurrentLoop,
unsigned Level,
FullDependence &Result,
Constraint &NewConstraint) const;
/// weakCrossingSIVtest - Tests the weak-crossing SIV subscript pair
/// (Src and Dst) for dependence.
/// Things of the form [c1 + a*i] and [c2 - a*i],
/// where i is an induction variable, c1 and c2 are loop invariant,
/// and a is a constant.
/// Returns true if any possible dependence is disproved.
/// If there might be a dependence, returns false.
/// Sets appropriate direction entry.
/// Set consistent to false.
/// Marks the dependence as splitable.
bool weakCrossingSIVtest(const SCEV *SrcCoeff,
const SCEV *SrcConst,
const SCEV *DstConst,
const Loop *CurrentLoop,
unsigned Level,
FullDependence &Result,
Constraint &NewConstraint,
const SCEV *&SplitIter) const;
/// ExactSIVtest - Tests the SIV subscript pair
/// (Src and Dst) for dependence.
/// Things of the form [c1 + a1*i] and [c2 + a2*i],
/// where i is an induction variable, c1 and c2 are loop invariant,
/// and a1 and a2 are constant.
/// Returns true if any possible dependence is disproved.
/// If there might be a dependence, returns false.
/// Sets appropriate direction entry.
/// Set consistent to false.
bool exactSIVtest(const SCEV *SrcCoeff,
const SCEV *DstCoeff,
const SCEV *SrcConst,
const SCEV *DstConst,
const Loop *CurrentLoop,
unsigned Level,
FullDependence &Result,
Constraint &NewConstraint) const;
/// weakZeroSrcSIVtest - Tests the weak-zero SIV subscript pair
/// (Src and Dst) for dependence.
/// Things of the form [c1] and [c2 + a*i],
/// where i is an induction variable, c1 and c2 are loop invariant,
/// and a is a constant. See also weakZeroDstSIVtest.
/// Returns true if any possible dependence is disproved.
/// If there might be a dependence, returns false.
/// Sets appropriate direction entry.
/// Set consistent to false.
/// If loop peeling will break the dependence, mark appropriately.
bool weakZeroSrcSIVtest(const SCEV *DstCoeff,
const SCEV *SrcConst,
const SCEV *DstConst,
const Loop *CurrentLoop,
unsigned Level,
FullDependence &Result,
Constraint &NewConstraint) const;
/// weakZeroDstSIVtest - Tests the weak-zero SIV subscript pair
/// (Src and Dst) for dependence.
/// Things of the form [c1 + a*i] and [c2],
/// where i is an induction variable, c1 and c2 are loop invariant,
/// and a is a constant. See also weakZeroSrcSIVtest.
/// Returns true if any possible dependence is disproved.
/// If there might be a dependence, returns false.
/// Sets appropriate direction entry.
/// Set consistent to false.
/// If loop peeling will break the dependence, mark appropriately.
bool weakZeroDstSIVtest(const SCEV *SrcCoeff,
const SCEV *SrcConst,
const SCEV *DstConst,
const Loop *CurrentLoop,
unsigned Level,
FullDependence &Result,
Constraint &NewConstraint) const;
/// exactRDIVtest - Tests the RDIV subscript pair for dependence.
/// Things of the form [c1 + a*i] and [c2 + b*j],
/// where i and j are induction variable, c1 and c2 are loop invariant,
/// and a and b are constants.
/// Returns true if any possible dependence is disproved.
/// Marks the result as inconsistent.
/// Works in some cases that symbolicRDIVtest doesn't,
/// and vice versa.
bool exactRDIVtest(const SCEV *SrcCoeff,
const SCEV *DstCoeff,
const SCEV *SrcConst,
const SCEV *DstConst,
const Loop *SrcLoop,
const Loop *DstLoop,
FullDependence &Result) const;
/// symbolicRDIVtest - Tests the RDIV subscript pair for dependence.
/// Things of the form [c1 + a*i] and [c2 + b*j],
/// where i and j are induction variable, c1 and c2 are loop invariant,
/// and a and b are constants.
/// Returns true if any possible dependence is disproved.
/// Marks the result as inconsistent.
/// Works in some cases that exactRDIVtest doesn't,
/// and vice versa. Can also be used as a backup for
/// ordinary SIV tests.
bool symbolicRDIVtest(const SCEV *SrcCoeff,
const SCEV *DstCoeff,
const SCEV *SrcConst,
const SCEV *DstConst,
const Loop *SrcLoop,
const Loop *DstLoop) const;
/// gcdMIVtest - Tests an MIV subscript pair for dependence.
/// Returns true if any possible dependence is disproved.
/// Marks the result as inconsistent.
/// Can sometimes disprove the equal direction for 1 or more loops.
// Can handle some symbolics that even the SIV tests don't get,
/// so we use it as a backup for everything.
bool gcdMIVtest(const SCEV *Src,
const SCEV *Dst,
FullDependence &Result) const;
/// banerjeeMIVtest - Tests an MIV subscript pair for dependence.
/// Returns true if any possible dependence is disproved.
/// Marks the result as inconsistent.
/// Computes directions.
bool banerjeeMIVtest(const SCEV *Src,
const SCEV *Dst,
const SmallBitVector &Loops,
FullDependence &Result) const;
/// collectCoefficientInfo - Walks through the subscript,
/// collecting each coefficient, the associated loop bounds,
/// and recording its positive and negative parts for later use.
CoefficientInfo *collectCoeffInfo(const SCEV *Subscript,
bool SrcFlag,
const SCEV *&Constant) const;
/// getPositivePart - X^+ = max(X, 0).
///
const SCEV *getPositivePart(const SCEV *X) const;
/// getNegativePart - X^- = min(X, 0).
///
const SCEV *getNegativePart(const SCEV *X) const;
/// getLowerBound - Looks through all the bounds info and
/// computes the lower bound given the current direction settings
/// at each level.
const SCEV *getLowerBound(BoundInfo *Bound) const;
/// getUpperBound - Looks through all the bounds info and
/// computes the upper bound given the current direction settings
/// at each level.
const SCEV *getUpperBound(BoundInfo *Bound) const;
/// exploreDirections - Hierarchically expands the direction vector
/// search space, combining the directions of discovered dependences
/// in the DirSet field of Bound. Returns the number of distinct
/// dependences discovered. If the dependence is disproved,
/// it will return 0.
unsigned exploreDirections(unsigned Level,
CoefficientInfo *A,
CoefficientInfo *B,
BoundInfo *Bound,
const SmallBitVector &Loops,
unsigned &DepthExpanded,
const SCEV *Delta) const;
/// testBounds - Returns true iff the current bounds are plausible.
///
bool testBounds(unsigned char DirKind,
unsigned Level,
BoundInfo *Bound,
const SCEV *Delta) const;
/// findBoundsALL - Computes the upper and lower bounds for level K
/// using the * direction. Records them in Bound.
void findBoundsALL(CoefficientInfo *A,
CoefficientInfo *B,
BoundInfo *Bound,
unsigned K) const;
/// findBoundsLT - Computes the upper and lower bounds for level K
/// using the < direction. Records them in Bound.
void findBoundsLT(CoefficientInfo *A,
CoefficientInfo *B,
BoundInfo *Bound,
unsigned K) const;
/// findBoundsGT - Computes the upper and lower bounds for level K
/// using the > direction. Records them in Bound.
void findBoundsGT(CoefficientInfo *A,
CoefficientInfo *B,
BoundInfo *Bound,
unsigned K) const;
/// findBoundsEQ - Computes the upper and lower bounds for level K
/// using the = direction. Records them in Bound.
void findBoundsEQ(CoefficientInfo *A,
CoefficientInfo *B,
BoundInfo *Bound,
unsigned K) const;
/// intersectConstraints - Updates X with the intersection
/// of the Constraints X and Y. Returns true if X has changed.
bool intersectConstraints(Constraint *X,
const Constraint *Y);
/// propagate - Review the constraints, looking for opportunities
/// to simplify a subscript pair (Src and Dst).
/// Return true if some simplification occurs.
/// If the simplification isn't exact (that is, if it is conservative
/// in terms of dependence), set consistent to false.
bool propagate(const SCEV *&Src,
const SCEV *&Dst,
SmallBitVector &Loops,
SmallVector<Constraint, 4> &Constraints,
bool &Consistent);
/// propagateDistance - Attempt to propagate a distance
/// constraint into a subscript pair (Src and Dst).
/// Return true if some simplification occurs.
/// If the simplification isn't exact (that is, if it is conservative
/// in terms of dependence), set consistent to false.
bool propagateDistance(const SCEV *&Src,
const SCEV *&Dst,
Constraint &CurConstraint,
bool &Consistent);
/// propagatePoint - Attempt to propagate a point
/// constraint into a subscript pair (Src and Dst).
/// Return true if some simplification occurs.
bool propagatePoint(const SCEV *&Src,
const SCEV *&Dst,
Constraint &CurConstraint);
/// propagateLine - Attempt to propagate a line
/// constraint into a subscript pair (Src and Dst).
/// Return true if some simplification occurs.
/// If the simplification isn't exact (that is, if it is conservative
/// in terms of dependence), set consistent to false.
bool propagateLine(const SCEV *&Src,
const SCEV *&Dst,
Constraint &CurConstraint,
bool &Consistent);
/// findCoefficient - Given a linear SCEV,
/// return the coefficient corresponding to specified loop.
/// If there isn't one, return the SCEV constant 0.
/// For example, given a*i + b*j + c*k, returning the coefficient
/// corresponding to the j loop would yield b.
const SCEV *findCoefficient(const SCEV *Expr,
const Loop *TargetLoop) const;
/// zeroCoefficient - Given a linear SCEV,
/// return the SCEV given by zeroing out the coefficient
/// corresponding to the specified loop.
/// For example, given a*i + b*j + c*k, zeroing the coefficient
/// corresponding to the j loop would yield a*i + c*k.
const SCEV *zeroCoefficient(const SCEV *Expr,
const Loop *TargetLoop) const;
/// addToCoefficient - Given a linear SCEV Expr,
/// return the SCEV given by adding some Value to the
/// coefficient corresponding to the specified TargetLoop.
/// For example, given a*i + b*j + c*k, adding 1 to the coefficient
/// corresponding to the j loop would yield a*i + (b+1)*j + c*k.
const SCEV *addToCoefficient(const SCEV *Expr,
const Loop *TargetLoop,
const SCEV *Value) const;
/// updateDirection - Update direction vector entry
/// based on the current constraint.
void updateDirection(Dependence::DVEntry &Level,
const Constraint &CurConstraint) const;
public:
static char ID; // Class identification, replacement for typeinfo
DependenceAnalysis() : FunctionPass(ID) {
initializeDependenceAnalysisPass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F);
void releaseMemory();
void getAnalysisUsage(AnalysisUsage &) const;
void print(raw_ostream &, const Module * = 0) const;
}; // class DependenceAnalysis
/// createDependenceAnalysisPass - This creates an instance of the
/// DependenceAnalysis pass.
FunctionPass *createDependenceAnalysisPass();
} // namespace llvm
#endif

View File

@@ -0,0 +1,30 @@
//===-- DomPrinter.h - Dom printer external interface ------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines external functions that can be called to explicitly
// instantiate the dominance tree printer.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_DOMPRINTER_H
#define LLVM_ANALYSIS_DOMPRINTER_H
namespace llvm {
class FunctionPass;
FunctionPass *createDomPrinterPass();
FunctionPass *createDomOnlyPrinterPass();
FunctionPass *createDomViewerPass();
FunctionPass *createDomOnlyViewerPass();
FunctionPass *createPostDomPrinterPass();
FunctionPass *createPostDomOnlyPrinterPass();
FunctionPass *createPostDomViewerPass();
FunctionPass *createPostDomOnlyViewerPass();
} // End llvm namespace
#endif

View File

@@ -0,0 +1,190 @@
//===- llvm/Analysis/DominanceFrontier.h - Dominator Frontiers --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the DominanceFrontier class, which calculate and holds the
// dominance frontier for a function.
//
// This should be considered deprecated, don't add any more uses of this data
// structure.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_DOMINANCEFRONTIER_H
#define LLVM_ANALYSIS_DOMINANCEFRONTIER_H
#include "llvm/Analysis/Dominators.h"
#include <map>
#include <set>
namespace llvm {
//===----------------------------------------------------------------------===//
/// DominanceFrontierBase - Common base class for computing forward and inverse
/// dominance frontiers for a function.
///
class DominanceFrontierBase : public FunctionPass {
public:
typedef std::set<BasicBlock*> DomSetType; // Dom set for a bb
typedef std::map<BasicBlock*, DomSetType> DomSetMapType; // Dom set map
protected:
DomSetMapType Frontiers;
std::vector<BasicBlock*> Roots;
const bool IsPostDominators;
public:
DominanceFrontierBase(char &ID, bool isPostDom)
: FunctionPass(ID), IsPostDominators(isPostDom) {}
/// getRoots - Return the root blocks of the current CFG. This may include
/// multiple blocks if we are computing post dominators. For forward
/// dominators, this will always be a single block (the entry node).
///
inline const std::vector<BasicBlock*> &getRoots() const { return Roots; }
/// isPostDominator - Returns true if analysis based of postdoms
///
bool isPostDominator() const { return IsPostDominators; }
virtual void releaseMemory() { Frontiers.clear(); }
// Accessor interface:
typedef DomSetMapType::iterator iterator;
typedef DomSetMapType::const_iterator const_iterator;
iterator begin() { return Frontiers.begin(); }
const_iterator begin() const { return Frontiers.begin(); }
iterator end() { return Frontiers.end(); }
const_iterator end() const { return Frontiers.end(); }
iterator find(BasicBlock *B) { return Frontiers.find(B); }
const_iterator find(BasicBlock *B) const { return Frontiers.find(B); }
iterator addBasicBlock(BasicBlock *BB, const DomSetType &frontier) {
assert(find(BB) == end() && "Block already in DominanceFrontier!");
return Frontiers.insert(std::make_pair(BB, frontier)).first;
}
/// removeBlock - Remove basic block BB's frontier.
void removeBlock(BasicBlock *BB) {
assert(find(BB) != end() && "Block is not in DominanceFrontier!");
for (iterator I = begin(), E = end(); I != E; ++I)
I->second.erase(BB);
Frontiers.erase(BB);
}
void addToFrontier(iterator I, BasicBlock *Node) {
assert(I != end() && "BB is not in DominanceFrontier!");
I->second.insert(Node);
}
void removeFromFrontier(iterator I, BasicBlock *Node) {
assert(I != end() && "BB is not in DominanceFrontier!");
assert(I->second.count(Node) && "Node is not in DominanceFrontier of BB");
I->second.erase(Node);
}
/// compareDomSet - Return false if two domsets match. Otherwise
/// return true;
bool compareDomSet(DomSetType &DS1, const DomSetType &DS2) const {
std::set<BasicBlock *> tmpSet;
for (DomSetType::const_iterator I = DS2.begin(),
E = DS2.end(); I != E; ++I)
tmpSet.insert(*I);
for (DomSetType::const_iterator I = DS1.begin(),
E = DS1.end(); I != E; ) {
BasicBlock *Node = *I++;
if (tmpSet.erase(Node) == 0)
// Node is in DS1 but not in DS2.
return true;
}
if (!tmpSet.empty())
// There are nodes that are in DS2 but not in DS1.
return true;
// DS1 and DS2 matches.
return false;
}
/// compare - Return true if the other dominance frontier base matches
/// this dominance frontier base. Otherwise return false.
bool compare(DominanceFrontierBase &Other) const {
DomSetMapType tmpFrontiers;
for (DomSetMapType::const_iterator I = Other.begin(),
E = Other.end(); I != E; ++I)
tmpFrontiers.insert(std::make_pair(I->first, I->second));
for (DomSetMapType::iterator I = tmpFrontiers.begin(),
E = tmpFrontiers.end(); I != E; ) {
BasicBlock *Node = I->first;
const_iterator DFI = find(Node);
if (DFI == end())
return true;
if (compareDomSet(I->second, DFI->second))
return true;
++I;
tmpFrontiers.erase(Node);
}
if (!tmpFrontiers.empty())
return true;
return false;
}
/// print - Convert to human readable form
///
virtual void print(raw_ostream &OS, const Module* = 0) const;
/// dump - Dump the dominance frontier to dbgs().
void dump() const;
};
//===-------------------------------------
/// DominanceFrontier Class - Concrete subclass of DominanceFrontierBase that is
/// used to compute a forward dominator frontiers.
///
class DominanceFrontier : public DominanceFrontierBase {
virtual void anchor();
public:
static char ID; // Pass ID, replacement for typeid
DominanceFrontier() :
DominanceFrontierBase(ID, false) {
initializeDominanceFrontierPass(*PassRegistry::getPassRegistry());
}
BasicBlock *getRoot() const {
assert(Roots.size() == 1 && "Should always have entry node!");
return Roots[0];
}
virtual bool runOnFunction(Function &) {
Frontiers.clear();
DominatorTree &DT = getAnalysis<DominatorTree>();
Roots = DT.getRoots();
assert(Roots.size() == 1 && "Only one entry block for forward domfronts!");
calculate(DT, DT[Roots[0]]);
return false;
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequired<DominatorTree>();
}
const DomSetType &calculate(const DominatorTree &DT,
const DomTreeNode *Node);
};
} // End llvm namespace
#endif

View File

@@ -0,0 +1,289 @@
//=== llvm/Analysis/DominatorInternals.h - Dominator Calculation -*- C++ -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_DOMINATOR_INTERNALS_H
#define LLVM_ANALYSIS_DOMINATOR_INTERNALS_H
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Analysis/Dominators.h"
//===----------------------------------------------------------------------===//
//
// DominatorTree construction - This pass constructs immediate dominator
// information for a flow-graph based on the algorithm described in this
// document:
//
// A Fast Algorithm for Finding Dominators in a Flowgraph
// T. Lengauer & R. Tarjan, ACM TOPLAS July 1979, pgs 121-141.
//
// This implements the O(n*log(n)) versions of EVAL and LINK, because it turns
// out that the theoretically slower O(n*log(n)) implementation is actually
// faster than the almost-linear O(n*alpha(n)) version, even for large CFGs.
//
//===----------------------------------------------------------------------===//
namespace llvm {
template<class GraphT>
unsigned DFSPass(DominatorTreeBase<typename GraphT::NodeType>& DT,
typename GraphT::NodeType* V, unsigned N) {
// This is more understandable as a recursive algorithm, but we can't use the
// recursive algorithm due to stack depth issues. Keep it here for
// documentation purposes.
#if 0
InfoRec &VInfo = DT.Info[DT.Roots[i]];
VInfo.DFSNum = VInfo.Semi = ++N;
VInfo.Label = V;
Vertex.push_back(V); // Vertex[n] = V;
for (succ_iterator SI = succ_begin(V), E = succ_end(V); SI != E; ++SI) {
InfoRec &SuccVInfo = DT.Info[*SI];
if (SuccVInfo.Semi == 0) {
SuccVInfo.Parent = V;
N = DTDFSPass(DT, *SI, N);
}
}
#else
bool IsChildOfArtificialExit = (N != 0);
SmallVector<std::pair<typename GraphT::NodeType*,
typename GraphT::ChildIteratorType>, 32> Worklist;
Worklist.push_back(std::make_pair(V, GraphT::child_begin(V)));
while (!Worklist.empty()) {
typename GraphT::NodeType* BB = Worklist.back().first;
typename GraphT::ChildIteratorType NextSucc = Worklist.back().second;
typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &BBInfo =
DT.Info[BB];
// First time we visited this BB?
if (NextSucc == GraphT::child_begin(BB)) {
BBInfo.DFSNum = BBInfo.Semi = ++N;
BBInfo.Label = BB;
DT.Vertex.push_back(BB); // Vertex[n] = V;
if (IsChildOfArtificialExit)
BBInfo.Parent = 1;
IsChildOfArtificialExit = false;
}
// store the DFS number of the current BB - the reference to BBInfo might
// get invalidated when processing the successors.
unsigned BBDFSNum = BBInfo.DFSNum;
// If we are done with this block, remove it from the worklist.
if (NextSucc == GraphT::child_end(BB)) {
Worklist.pop_back();
continue;
}
// Increment the successor number for the next time we get to it.
++Worklist.back().second;
// Visit the successor next, if it isn't already visited.
typename GraphT::NodeType* Succ = *NextSucc;
typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &SuccVInfo =
DT.Info[Succ];
if (SuccVInfo.Semi == 0) {
SuccVInfo.Parent = BBDFSNum;
Worklist.push_back(std::make_pair(Succ, GraphT::child_begin(Succ)));
}
}
#endif
return N;
}
template<class GraphT>
typename GraphT::NodeType*
Eval(DominatorTreeBase<typename GraphT::NodeType>& DT,
typename GraphT::NodeType *VIn, unsigned LastLinked) {
typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &VInInfo =
DT.Info[VIn];
if (VInInfo.DFSNum < LastLinked)
return VIn;
SmallVector<typename GraphT::NodeType*, 32> Work;
SmallPtrSet<typename GraphT::NodeType*, 32> Visited;
if (VInInfo.Parent >= LastLinked)
Work.push_back(VIn);
while (!Work.empty()) {
typename GraphT::NodeType* V = Work.back();
typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &VInfo =
DT.Info[V];
typename GraphT::NodeType* VAncestor = DT.Vertex[VInfo.Parent];
// Process Ancestor first
if (Visited.insert(VAncestor) && VInfo.Parent >= LastLinked) {
Work.push_back(VAncestor);
continue;
}
Work.pop_back();
// Update VInfo based on Ancestor info
if (VInfo.Parent < LastLinked)
continue;
typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &VAInfo =
DT.Info[VAncestor];
typename GraphT::NodeType* VAncestorLabel = VAInfo.Label;
typename GraphT::NodeType* VLabel = VInfo.Label;
if (DT.Info[VAncestorLabel].Semi < DT.Info[VLabel].Semi)
VInfo.Label = VAncestorLabel;
VInfo.Parent = VAInfo.Parent;
}
return VInInfo.Label;
}
template<class FuncT, class NodeT>
void Calculate(DominatorTreeBase<typename GraphTraits<NodeT>::NodeType>& DT,
FuncT& F) {
typedef GraphTraits<NodeT> GraphT;
unsigned N = 0;
bool MultipleRoots = (DT.Roots.size() > 1);
if (MultipleRoots) {
typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &BBInfo =
DT.Info[NULL];
BBInfo.DFSNum = BBInfo.Semi = ++N;
BBInfo.Label = NULL;
DT.Vertex.push_back(NULL); // Vertex[n] = V;
}
// Step #1: Number blocks in depth-first order and initialize variables used
// in later stages of the algorithm.
for (unsigned i = 0, e = static_cast<unsigned>(DT.Roots.size());
i != e; ++i)
N = DFSPass<GraphT>(DT, DT.Roots[i], N);
// it might be that some blocks did not get a DFS number (e.g., blocks of
// infinite loops). In these cases an artificial exit node is required.
MultipleRoots |= (DT.isPostDominator() && N != GraphTraits<FuncT*>::size(&F));
// When naively implemented, the Lengauer-Tarjan algorithm requires a separate
// bucket for each vertex. However, this is unnecessary, because each vertex
// is only placed into a single bucket (that of its semidominator), and each
// vertex's bucket is processed before it is added to any bucket itself.
//
// Instead of using a bucket per vertex, we use a single array Buckets that
// has two purposes. Before the vertex V with preorder number i is processed,
// Buckets[i] stores the index of the first element in V's bucket. After V's
// bucket is processed, Buckets[i] stores the index of the next element in the
// bucket containing V, if any.
SmallVector<unsigned, 32> Buckets;
Buckets.resize(N + 1);
for (unsigned i = 1; i <= N; ++i)
Buckets[i] = i;
for (unsigned i = N; i >= 2; --i) {
typename GraphT::NodeType* W = DT.Vertex[i];
typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &WInfo =
DT.Info[W];
// Step #2: Implicitly define the immediate dominator of vertices
for (unsigned j = i; Buckets[j] != i; j = Buckets[j]) {
typename GraphT::NodeType* V = DT.Vertex[Buckets[j]];
typename GraphT::NodeType* U = Eval<GraphT>(DT, V, i + 1);
DT.IDoms[V] = DT.Info[U].Semi < i ? U : W;
}
// Step #3: Calculate the semidominators of all vertices
// initialize the semi dominator to point to the parent node
WInfo.Semi = WInfo.Parent;
typedef GraphTraits<Inverse<NodeT> > InvTraits;
for (typename InvTraits::ChildIteratorType CI =
InvTraits::child_begin(W),
E = InvTraits::child_end(W); CI != E; ++CI) {
typename InvTraits::NodeType *N = *CI;
if (DT.Info.count(N)) { // Only if this predecessor is reachable!
unsigned SemiU = DT.Info[Eval<GraphT>(DT, N, i + 1)].Semi;
if (SemiU < WInfo.Semi)
WInfo.Semi = SemiU;
}
}
// If V is a non-root vertex and sdom(V) = parent(V), then idom(V) is
// necessarily parent(V). In this case, set idom(V) here and avoid placing
// V into a bucket.
if (WInfo.Semi == WInfo.Parent) {
DT.IDoms[W] = DT.Vertex[WInfo.Parent];
} else {
Buckets[i] = Buckets[WInfo.Semi];
Buckets[WInfo.Semi] = i;
}
}
if (N >= 1) {
typename GraphT::NodeType* Root = DT.Vertex[1];
for (unsigned j = 1; Buckets[j] != 1; j = Buckets[j]) {
typename GraphT::NodeType* V = DT.Vertex[Buckets[j]];
DT.IDoms[V] = Root;
}
}
// Step #4: Explicitly define the immediate dominator of each vertex
for (unsigned i = 2; i <= N; ++i) {
typename GraphT::NodeType* W = DT.Vertex[i];
typename GraphT::NodeType*& WIDom = DT.IDoms[W];
if (WIDom != DT.Vertex[DT.Info[W].Semi])
WIDom = DT.IDoms[WIDom];
}
if (DT.Roots.empty()) return;
// Add a node for the root. This node might be the actual root, if there is
// one exit block, or it may be the virtual exit (denoted by (BasicBlock *)0)
// which postdominates all real exits if there are multiple exit blocks, or
// an infinite loop.
typename GraphT::NodeType* Root = !MultipleRoots ? DT.Roots[0] : 0;
DT.DomTreeNodes[Root] = DT.RootNode =
new DomTreeNodeBase<typename GraphT::NodeType>(Root, 0);
// Loop over all of the reachable blocks in the function...
for (unsigned i = 2; i <= N; ++i) {
typename GraphT::NodeType* W = DT.Vertex[i];
DomTreeNodeBase<typename GraphT::NodeType> *BBNode = DT.DomTreeNodes[W];
if (BBNode) continue; // Haven't calculated this node yet?
typename GraphT::NodeType* ImmDom = DT.getIDom(W);
assert(ImmDom || DT.DomTreeNodes[NULL]);
// Get or calculate the node for the immediate dominator
DomTreeNodeBase<typename GraphT::NodeType> *IDomNode =
DT.getNodeForBlock(ImmDom);
// Add a new tree node for this BasicBlock, and link it as a child of
// IDomNode
DomTreeNodeBase<typename GraphT::NodeType> *C =
new DomTreeNodeBase<typename GraphT::NodeType>(W, IDomNode);
DT.DomTreeNodes[W] = IDomNode->addChild(C);
}
// Free temporary memory used to construct idom's
DT.IDoms.clear();
DT.Info.clear();
std::vector<typename GraphT::NodeType*>().swap(DT.Vertex);
DT.updateDFSNumbers();
}
}
#endif

View File

@@ -0,0 +1,920 @@
//===- llvm/Analysis/Dominators.h - Dominator Info Calculation --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the DominatorTree class, which provides fast and efficient
// dominance queries.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_DOMINATORS_H
#define LLVM_ANALYSIS_DOMINATORS_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/IR/Function.h"
#include "llvm/Pass.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
namespace llvm {
//===----------------------------------------------------------------------===//
/// DominatorBase - Base class that other, more interesting dominator analyses
/// inherit from.
///
template <class NodeT>
class DominatorBase {
protected:
std::vector<NodeT*> Roots;
const bool IsPostDominators;
inline explicit DominatorBase(bool isPostDom) :
Roots(), IsPostDominators(isPostDom) {}
public:
/// getRoots - Return the root blocks of the current CFG. This may include
/// multiple blocks if we are computing post dominators. For forward
/// dominators, this will always be a single block (the entry node).
///
inline const std::vector<NodeT*> &getRoots() const { return Roots; }
/// isPostDominator - Returns true if analysis based of postdoms
///
bool isPostDominator() const { return IsPostDominators; }
};
//===----------------------------------------------------------------------===//
// DomTreeNode - Dominator Tree Node
template<class NodeT> class DominatorTreeBase;
struct PostDominatorTree;
class MachineBasicBlock;
template <class NodeT>
class DomTreeNodeBase {
NodeT *TheBB;
DomTreeNodeBase<NodeT> *IDom;
std::vector<DomTreeNodeBase<NodeT> *> Children;
int DFSNumIn, DFSNumOut;
template<class N> friend class DominatorTreeBase;
friend struct PostDominatorTree;
public:
typedef typename std::vector<DomTreeNodeBase<NodeT> *>::iterator iterator;
typedef typename std::vector<DomTreeNodeBase<NodeT> *>::const_iterator
const_iterator;
iterator begin() { return Children.begin(); }
iterator end() { return Children.end(); }
const_iterator begin() const { return Children.begin(); }
const_iterator end() const { return Children.end(); }
NodeT *getBlock() const { return TheBB; }
DomTreeNodeBase<NodeT> *getIDom() const { return IDom; }
const std::vector<DomTreeNodeBase<NodeT>*> &getChildren() const {
return Children;
}
DomTreeNodeBase(NodeT *BB, DomTreeNodeBase<NodeT> *iDom)
: TheBB(BB), IDom(iDom), DFSNumIn(-1), DFSNumOut(-1) { }
DomTreeNodeBase<NodeT> *addChild(DomTreeNodeBase<NodeT> *C) {
Children.push_back(C);
return C;
}
size_t getNumChildren() const {
return Children.size();
}
void clearAllChildren() {
Children.clear();
}
bool compare(const DomTreeNodeBase<NodeT> *Other) const {
if (getNumChildren() != Other->getNumChildren())
return true;
SmallPtrSet<const NodeT *, 4> OtherChildren;
for (const_iterator I = Other->begin(), E = Other->end(); I != E; ++I) {
const NodeT *Nd = (*I)->getBlock();
OtherChildren.insert(Nd);
}
for (const_iterator I = begin(), E = end(); I != E; ++I) {
const NodeT *N = (*I)->getBlock();
if (OtherChildren.count(N) == 0)
return true;
}
return false;
}
void setIDom(DomTreeNodeBase<NodeT> *NewIDom) {
assert(IDom && "No immediate dominator?");
if (IDom != NewIDom) {
typename std::vector<DomTreeNodeBase<NodeT>*>::iterator I =
std::find(IDom->Children.begin(), IDom->Children.end(), this);
assert(I != IDom->Children.end() &&
"Not in immediate dominator children set!");
// I am no longer your child...
IDom->Children.erase(I);
// Switch to new dominator
IDom = NewIDom;
IDom->Children.push_back(this);
}
}
/// getDFSNumIn/getDFSNumOut - These are an internal implementation detail, do
/// not call them.
unsigned getDFSNumIn() const { return DFSNumIn; }
unsigned getDFSNumOut() const { return DFSNumOut; }
private:
// Return true if this node is dominated by other. Use this only if DFS info
// is valid.
bool DominatedBy(const DomTreeNodeBase<NodeT> *other) const {
return this->DFSNumIn >= other->DFSNumIn &&
this->DFSNumOut <= other->DFSNumOut;
}
};
EXTERN_TEMPLATE_INSTANTIATION(class DomTreeNodeBase<BasicBlock>);
EXTERN_TEMPLATE_INSTANTIATION(class DomTreeNodeBase<MachineBasicBlock>);
template<class NodeT>
inline raw_ostream &operator<<(raw_ostream &o,
const DomTreeNodeBase<NodeT> *Node) {
if (Node->getBlock())
WriteAsOperand(o, Node->getBlock(), false);
else
o << " <<exit node>>";
o << " {" << Node->getDFSNumIn() << "," << Node->getDFSNumOut() << "}";
return o << "\n";
}
template<class NodeT>
inline void PrintDomTree(const DomTreeNodeBase<NodeT> *N, raw_ostream &o,
unsigned Lev) {
o.indent(2*Lev) << "[" << Lev << "] " << N;
for (typename DomTreeNodeBase<NodeT>::const_iterator I = N->begin(),
E = N->end(); I != E; ++I)
PrintDomTree<NodeT>(*I, o, Lev+1);
}
typedef DomTreeNodeBase<BasicBlock> DomTreeNode;
//===----------------------------------------------------------------------===//
/// DominatorTree - Calculate the immediate dominator tree for a function.
///
template<class FuncT, class N>
void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType>& DT,
FuncT& F);
template<class NodeT>
class DominatorTreeBase : public DominatorBase<NodeT> {
bool dominatedBySlowTreeWalk(const DomTreeNodeBase<NodeT> *A,
const DomTreeNodeBase<NodeT> *B) const {
assert(A != B);
assert(isReachableFromEntry(B));
assert(isReachableFromEntry(A));
const DomTreeNodeBase<NodeT> *IDom;
while ((IDom = B->getIDom()) != 0 && IDom != A && IDom != B)
B = IDom; // Walk up the tree
return IDom != 0;
}
protected:
typedef DenseMap<NodeT*, DomTreeNodeBase<NodeT>*> DomTreeNodeMapType;
DomTreeNodeMapType DomTreeNodes;
DomTreeNodeBase<NodeT> *RootNode;
bool DFSInfoValid;
unsigned int SlowQueries;
// Information record used during immediate dominators computation.
struct InfoRec {
unsigned DFSNum;
unsigned Parent;
unsigned Semi;
NodeT *Label;
InfoRec() : DFSNum(0), Parent(0), Semi(0), Label(0) {}
};
DenseMap<NodeT*, NodeT*> IDoms;
// Vertex - Map the DFS number to the BasicBlock*
std::vector<NodeT*> Vertex;
// Info - Collection of information used during the computation of idoms.
DenseMap<NodeT*, InfoRec> Info;
void reset() {
for (typename DomTreeNodeMapType::iterator I = this->DomTreeNodes.begin(),
E = DomTreeNodes.end(); I != E; ++I)
delete I->second;
DomTreeNodes.clear();
IDoms.clear();
this->Roots.clear();
Vertex.clear();
RootNode = 0;
}
// NewBB is split and now it has one successor. Update dominator tree to
// reflect this change.
template<class N, class GraphT>
void Split(DominatorTreeBase<typename GraphT::NodeType>& DT,
typename GraphT::NodeType* NewBB) {
assert(std::distance(GraphT::child_begin(NewBB),
GraphT::child_end(NewBB)) == 1 &&
"NewBB should have a single successor!");
typename GraphT::NodeType* NewBBSucc = *GraphT::child_begin(NewBB);
std::vector<typename GraphT::NodeType*> PredBlocks;
typedef GraphTraits<Inverse<N> > InvTraits;
for (typename InvTraits::ChildIteratorType PI =
InvTraits::child_begin(NewBB),
PE = InvTraits::child_end(NewBB); PI != PE; ++PI)
PredBlocks.push_back(*PI);
assert(!PredBlocks.empty() && "No predblocks?");
bool NewBBDominatesNewBBSucc = true;
for (typename InvTraits::ChildIteratorType PI =
InvTraits::child_begin(NewBBSucc),
E = InvTraits::child_end(NewBBSucc); PI != E; ++PI) {
typename InvTraits::NodeType *ND = *PI;
if (ND != NewBB && !DT.dominates(NewBBSucc, ND) &&
DT.isReachableFromEntry(ND)) {
NewBBDominatesNewBBSucc = false;
break;
}
}
// Find NewBB's immediate dominator and create new dominator tree node for
// NewBB.
NodeT *NewBBIDom = 0;
unsigned i = 0;
for (i = 0; i < PredBlocks.size(); ++i)
if (DT.isReachableFromEntry(PredBlocks[i])) {
NewBBIDom = PredBlocks[i];
break;
}
// It's possible that none of the predecessors of NewBB are reachable;
// in that case, NewBB itself is unreachable, so nothing needs to be
// changed.
if (!NewBBIDom)
return;
for (i = i + 1; i < PredBlocks.size(); ++i) {
if (DT.isReachableFromEntry(PredBlocks[i]))
NewBBIDom = DT.findNearestCommonDominator(NewBBIDom, PredBlocks[i]);
}
// Create the new dominator tree node... and set the idom of NewBB.
DomTreeNodeBase<NodeT> *NewBBNode = DT.addNewBlock(NewBB, NewBBIDom);
// If NewBB strictly dominates other blocks, then it is now the immediate
// dominator of NewBBSucc. Update the dominator tree as appropriate.
if (NewBBDominatesNewBBSucc) {
DomTreeNodeBase<NodeT> *NewBBSuccNode = DT.getNode(NewBBSucc);
DT.changeImmediateDominator(NewBBSuccNode, NewBBNode);
}
}
public:
explicit DominatorTreeBase(bool isPostDom)
: DominatorBase<NodeT>(isPostDom), DFSInfoValid(false), SlowQueries(0) {}
virtual ~DominatorTreeBase() { reset(); }
/// compare - Return false if the other dominator tree base matches this
/// dominator tree base. Otherwise return true.
bool compare(DominatorTreeBase &Other) const {
const DomTreeNodeMapType &OtherDomTreeNodes = Other.DomTreeNodes;
if (DomTreeNodes.size() != OtherDomTreeNodes.size())
return true;
for (typename DomTreeNodeMapType::const_iterator
I = this->DomTreeNodes.begin(),
E = this->DomTreeNodes.end(); I != E; ++I) {
NodeT *BB = I->first;
typename DomTreeNodeMapType::const_iterator OI = OtherDomTreeNodes.find(BB);
if (OI == OtherDomTreeNodes.end())
return true;
DomTreeNodeBase<NodeT>* MyNd = I->second;
DomTreeNodeBase<NodeT>* OtherNd = OI->second;
if (MyNd->compare(OtherNd))
return true;
}
return false;
}
virtual void releaseMemory() { reset(); }
/// getNode - return the (Post)DominatorTree node for the specified basic
/// block. This is the same as using operator[] on this class.
///
inline DomTreeNodeBase<NodeT> *getNode(NodeT *BB) const {
return DomTreeNodes.lookup(BB);
}
/// getRootNode - This returns the entry node for the CFG of the function. If
/// this tree represents the post-dominance relations for a function, however,
/// this root may be a node with the block == NULL. This is the case when
/// there are multiple exit nodes from a particular function. Consumers of
/// post-dominance information must be capable of dealing with this
/// possibility.
///
DomTreeNodeBase<NodeT> *getRootNode() { return RootNode; }
const DomTreeNodeBase<NodeT> *getRootNode() const { return RootNode; }
/// properlyDominates - Returns true iff A dominates B and A != B.
/// Note that this is not a constant time operation!
///
bool properlyDominates(const DomTreeNodeBase<NodeT> *A,
const DomTreeNodeBase<NodeT> *B) {
if (A == 0 || B == 0)
return false;
if (A == B)
return false;
return dominates(A, B);
}
bool properlyDominates(const NodeT *A, const NodeT *B);
/// isReachableFromEntry - Return true if A is dominated by the entry
/// block of the function containing it.
bool isReachableFromEntry(const NodeT* A) const {
assert(!this->isPostDominator() &&
"This is not implemented for post dominators");
return isReachableFromEntry(getNode(const_cast<NodeT *>(A)));
}
inline bool isReachableFromEntry(const DomTreeNodeBase<NodeT> *A) const {
return A;
}
/// dominates - Returns true iff A dominates B. Note that this is not a
/// constant time operation!
///
inline bool dominates(const DomTreeNodeBase<NodeT> *A,
const DomTreeNodeBase<NodeT> *B) {
// A node trivially dominates itself.
if (B == A)
return true;
// An unreachable node is dominated by anything.
if (!isReachableFromEntry(B))
return true;
// And dominates nothing.
if (!isReachableFromEntry(A))
return false;
// Compare the result of the tree walk and the dfs numbers, if expensive
// checks are enabled.
#ifdef XDEBUG
assert((!DFSInfoValid ||
(dominatedBySlowTreeWalk(A, B) == B->DominatedBy(A))) &&
"Tree walk disagrees with dfs numbers!");
#endif
if (DFSInfoValid)
return B->DominatedBy(A);
// If we end up with too many slow queries, just update the
// DFS numbers on the theory that we are going to keep querying.
SlowQueries++;
if (SlowQueries > 32) {
updateDFSNumbers();
return B->DominatedBy(A);
}
return dominatedBySlowTreeWalk(A, B);
}
bool dominates(const NodeT *A, const NodeT *B);
NodeT *getRoot() const {
assert(this->Roots.size() == 1 && "Should always have entry node!");
return this->Roots[0];
}
/// findNearestCommonDominator - Find nearest common dominator basic block
/// for basic block A and B. If there is no such block then return NULL.
NodeT *findNearestCommonDominator(NodeT *A, NodeT *B) {
assert(A->getParent() == B->getParent() &&
"Two blocks are not in same function");
// If either A or B is a entry block then it is nearest common dominator
// (for forward-dominators).
if (!this->isPostDominator()) {
NodeT &Entry = A->getParent()->front();
if (A == &Entry || B == &Entry)
return &Entry;
}
// If B dominates A then B is nearest common dominator.
if (dominates(B, A))
return B;
// If A dominates B then A is nearest common dominator.
if (dominates(A, B))
return A;
DomTreeNodeBase<NodeT> *NodeA = getNode(A);
DomTreeNodeBase<NodeT> *NodeB = getNode(B);
// Collect NodeA dominators set.
SmallPtrSet<DomTreeNodeBase<NodeT>*, 16> NodeADoms;
NodeADoms.insert(NodeA);
DomTreeNodeBase<NodeT> *IDomA = NodeA->getIDom();
while (IDomA) {
NodeADoms.insert(IDomA);
IDomA = IDomA->getIDom();
}
// Walk NodeB immediate dominators chain and find common dominator node.
DomTreeNodeBase<NodeT> *IDomB = NodeB->getIDom();
while (IDomB) {
if (NodeADoms.count(IDomB) != 0)
return IDomB->getBlock();
IDomB = IDomB->getIDom();
}
return NULL;
}
const NodeT *findNearestCommonDominator(const NodeT *A, const NodeT *B) {
// Cast away the const qualifiers here. This is ok since
// const is re-introduced on the return type.
return findNearestCommonDominator(const_cast<NodeT *>(A),
const_cast<NodeT *>(B));
}
//===--------------------------------------------------------------------===//
// API to update (Post)DominatorTree information based on modifications to
// the CFG...
/// addNewBlock - Add a new node to the dominator tree information. This
/// creates a new node as a child of DomBB dominator node,linking it into
/// the children list of the immediate dominator.
DomTreeNodeBase<NodeT> *addNewBlock(NodeT *BB, NodeT *DomBB) {
assert(getNode(BB) == 0 && "Block already in dominator tree!");
DomTreeNodeBase<NodeT> *IDomNode = getNode(DomBB);
assert(IDomNode && "Not immediate dominator specified for block!");
DFSInfoValid = false;
return DomTreeNodes[BB] =
IDomNode->addChild(new DomTreeNodeBase<NodeT>(BB, IDomNode));
}
/// changeImmediateDominator - This method is used to update the dominator
/// tree information when a node's immediate dominator changes.
///
void changeImmediateDominator(DomTreeNodeBase<NodeT> *N,
DomTreeNodeBase<NodeT> *NewIDom) {
assert(N && NewIDom && "Cannot change null node pointers!");
DFSInfoValid = false;
N->setIDom(NewIDom);
}
void changeImmediateDominator(NodeT *BB, NodeT *NewBB) {
changeImmediateDominator(getNode(BB), getNode(NewBB));
}
/// eraseNode - Removes a node from the dominator tree. Block must not
/// dominate any other blocks. Removes node from its immediate dominator's
/// children list. Deletes dominator node associated with basic block BB.
void eraseNode(NodeT *BB) {
DomTreeNodeBase<NodeT> *Node = getNode(BB);
assert(Node && "Removing node that isn't in dominator tree.");
assert(Node->getChildren().empty() && "Node is not a leaf node.");
// Remove node from immediate dominator's children list.
DomTreeNodeBase<NodeT> *IDom = Node->getIDom();
if (IDom) {
typename std::vector<DomTreeNodeBase<NodeT>*>::iterator I =
std::find(IDom->Children.begin(), IDom->Children.end(), Node);
assert(I != IDom->Children.end() &&
"Not in immediate dominator children set!");
// I am no longer your child...
IDom->Children.erase(I);
}
DomTreeNodes.erase(BB);
delete Node;
}
/// removeNode - Removes a node from the dominator tree. Block must not
/// dominate any other blocks. Invalidates any node pointing to removed
/// block.
void removeNode(NodeT *BB) {
assert(getNode(BB) && "Removing node that isn't in dominator tree.");
DomTreeNodes.erase(BB);
}
/// splitBlock - BB is split and now it has one successor. Update dominator
/// tree to reflect this change.
void splitBlock(NodeT* NewBB) {
if (this->IsPostDominators)
this->Split<Inverse<NodeT*>, GraphTraits<Inverse<NodeT*> > >(*this, NewBB);
else
this->Split<NodeT*, GraphTraits<NodeT*> >(*this, NewBB);
}
/// print - Convert to human readable form
///
void print(raw_ostream &o) const {
o << "=============================--------------------------------\n";
if (this->isPostDominator())
o << "Inorder PostDominator Tree: ";
else
o << "Inorder Dominator Tree: ";
if (!this->DFSInfoValid)
o << "DFSNumbers invalid: " << SlowQueries << " slow queries.";
o << "\n";
// The postdom tree can have a null root if there are no returns.
if (getRootNode())
PrintDomTree<NodeT>(getRootNode(), o, 1);
}
protected:
template<class GraphT>
friend typename GraphT::NodeType* Eval(
DominatorTreeBase<typename GraphT::NodeType>& DT,
typename GraphT::NodeType* V,
unsigned LastLinked);
template<class GraphT>
friend unsigned DFSPass(DominatorTreeBase<typename GraphT::NodeType>& DT,
typename GraphT::NodeType* V,
unsigned N);
template<class FuncT, class N>
friend void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType>& DT,
FuncT& F);
/// updateDFSNumbers - Assign In and Out numbers to the nodes while walking
/// dominator tree in dfs order.
void updateDFSNumbers() {
unsigned DFSNum = 0;
SmallVector<std::pair<DomTreeNodeBase<NodeT>*,
typename DomTreeNodeBase<NodeT>::iterator>, 32> WorkStack;
DomTreeNodeBase<NodeT> *ThisRoot = getRootNode();
if (!ThisRoot)
return;
// Even in the case of multiple exits that form the post dominator root
// nodes, do not iterate over all exits, but start from the virtual root
// node. Otherwise bbs, that are not post dominated by any exit but by the
// virtual root node, will never be assigned a DFS number.
WorkStack.push_back(std::make_pair(ThisRoot, ThisRoot->begin()));
ThisRoot->DFSNumIn = DFSNum++;
while (!WorkStack.empty()) {
DomTreeNodeBase<NodeT> *Node = WorkStack.back().first;
typename DomTreeNodeBase<NodeT>::iterator ChildIt =
WorkStack.back().second;
// If we visited all of the children of this node, "recurse" back up the
// stack setting the DFOutNum.
if (ChildIt == Node->end()) {
Node->DFSNumOut = DFSNum++;
WorkStack.pop_back();
} else {
// Otherwise, recursively visit this child.
DomTreeNodeBase<NodeT> *Child = *ChildIt;
++WorkStack.back().second;
WorkStack.push_back(std::make_pair(Child, Child->begin()));
Child->DFSNumIn = DFSNum++;
}
}
SlowQueries = 0;
DFSInfoValid = true;
}
DomTreeNodeBase<NodeT> *getNodeForBlock(NodeT *BB) {
if (DomTreeNodeBase<NodeT> *Node = getNode(BB))
return Node;
// Haven't calculated this node yet? Get or calculate the node for the
// immediate dominator.
NodeT *IDom = getIDom(BB);
assert(IDom || this->DomTreeNodes[NULL]);
DomTreeNodeBase<NodeT> *IDomNode = getNodeForBlock(IDom);
// Add a new tree node for this BasicBlock, and link it as a child of
// IDomNode
DomTreeNodeBase<NodeT> *C = new DomTreeNodeBase<NodeT>(BB, IDomNode);
return this->DomTreeNodes[BB] = IDomNode->addChild(C);
}
inline NodeT *getIDom(NodeT *BB) const {
return IDoms.lookup(BB);
}
inline void addRoot(NodeT* BB) {
this->Roots.push_back(BB);
}
public:
/// recalculate - compute a dominator tree for the given function
template<class FT>
void recalculate(FT& F) {
typedef GraphTraits<FT*> TraitsTy;
reset();
this->Vertex.push_back(0);
if (!this->IsPostDominators) {
// Initialize root
NodeT *entry = TraitsTy::getEntryNode(&F);
this->Roots.push_back(entry);
this->IDoms[entry] = 0;
this->DomTreeNodes[entry] = 0;
Calculate<FT, NodeT*>(*this, F);
} else {
// Initialize the roots list
for (typename TraitsTy::nodes_iterator I = TraitsTy::nodes_begin(&F),
E = TraitsTy::nodes_end(&F); I != E; ++I) {
if (TraitsTy::child_begin(I) == TraitsTy::child_end(I))
addRoot(I);
// Prepopulate maps so that we don't get iterator invalidation issues later.
this->IDoms[I] = 0;
this->DomTreeNodes[I] = 0;
}
Calculate<FT, Inverse<NodeT*> >(*this, F);
}
}
};
// These two functions are declared out of line as a workaround for building
// with old (< r147295) versions of clang because of pr11642.
template<class NodeT>
bool DominatorTreeBase<NodeT>::dominates(const NodeT *A, const NodeT *B) {
if (A == B)
return true;
// Cast away the const qualifiers here. This is ok since
// this function doesn't actually return the values returned
// from getNode.
return dominates(getNode(const_cast<NodeT *>(A)),
getNode(const_cast<NodeT *>(B)));
}
template<class NodeT>
bool
DominatorTreeBase<NodeT>::properlyDominates(const NodeT *A, const NodeT *B) {
if (A == B)
return false;
// Cast away the const qualifiers here. This is ok since
// this function doesn't actually return the values returned
// from getNode.
return dominates(getNode(const_cast<NodeT *>(A)),
getNode(const_cast<NodeT *>(B)));
}
EXTERN_TEMPLATE_INSTANTIATION(class DominatorTreeBase<BasicBlock>);
class BasicBlockEdge {
const BasicBlock *Start;
const BasicBlock *End;
public:
BasicBlockEdge(const BasicBlock *Start_, const BasicBlock *End_) :
Start(Start_), End(End_) { }
const BasicBlock *getStart() const {
return Start;
}
const BasicBlock *getEnd() const {
return End;
}
bool isSingleEdge() const;
};
//===-------------------------------------
/// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to
/// compute a normal dominator tree.
///
class DominatorTree : public FunctionPass {
public:
static char ID; // Pass ID, replacement for typeid
DominatorTreeBase<BasicBlock>* DT;
DominatorTree() : FunctionPass(ID) {
initializeDominatorTreePass(*PassRegistry::getPassRegistry());
DT = new DominatorTreeBase<BasicBlock>(false);
}
~DominatorTree() {
delete DT;
}
DominatorTreeBase<BasicBlock>& getBase() { return *DT; }
/// getRoots - Return the root blocks of the current CFG. This may include
/// multiple blocks if we are computing post dominators. For forward
/// dominators, this will always be a single block (the entry node).
///
inline const std::vector<BasicBlock*> &getRoots() const {
return DT->getRoots();
}
inline BasicBlock *getRoot() const {
return DT->getRoot();
}
inline DomTreeNode *getRootNode() const {
return DT->getRootNode();
}
/// compare - Return false if the other dominator tree matches this
/// dominator tree. Otherwise return true.
inline bool compare(DominatorTree &Other) const {
DomTreeNode *R = getRootNode();
DomTreeNode *OtherR = Other.getRootNode();
if (!R || !OtherR || R->getBlock() != OtherR->getBlock())
return true;
if (DT->compare(Other.getBase()))
return true;
return false;
}
virtual bool runOnFunction(Function &F);
virtual void verifyAnalysis() const;
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
}
inline bool dominates(const DomTreeNode* A, const DomTreeNode* B) const {
return DT->dominates(A, B);
}
inline bool dominates(const BasicBlock* A, const BasicBlock* B) const {
return DT->dominates(A, B);
}
// dominates - Return true if Def dominates a use in User. This performs
// the special checks necessary if Def and User are in the same basic block.
// Note that Def doesn't dominate a use in Def itself!
bool dominates(const Instruction *Def, const Use &U) const;
bool dominates(const Instruction *Def, const Instruction *User) const;
bool dominates(const Instruction *Def, const BasicBlock *BB) const;
bool dominates(const BasicBlockEdge &BBE, const Use &U) const;
bool dominates(const BasicBlockEdge &BBE, const BasicBlock *BB) const;
bool properlyDominates(const DomTreeNode *A, const DomTreeNode *B) const {
return DT->properlyDominates(A, B);
}
bool properlyDominates(const BasicBlock *A, const BasicBlock *B) const {
return DT->properlyDominates(A, B);
}
/// findNearestCommonDominator - Find nearest common dominator basic block
/// for basic block A and B. If there is no such block then return NULL.
inline BasicBlock *findNearestCommonDominator(BasicBlock *A, BasicBlock *B) {
return DT->findNearestCommonDominator(A, B);
}
inline const BasicBlock *findNearestCommonDominator(const BasicBlock *A,
const BasicBlock *B) {
return DT->findNearestCommonDominator(A, B);
}
inline DomTreeNode *operator[](BasicBlock *BB) const {
return DT->getNode(BB);
}
/// getNode - return the (Post)DominatorTree node for the specified basic
/// block. This is the same as using operator[] on this class.
///
inline DomTreeNode *getNode(BasicBlock *BB) const {
return DT->getNode(BB);
}
/// addNewBlock - Add a new node to the dominator tree information. This
/// creates a new node as a child of DomBB dominator node,linking it into
/// the children list of the immediate dominator.
inline DomTreeNode *addNewBlock(BasicBlock *BB, BasicBlock *DomBB) {
return DT->addNewBlock(BB, DomBB);
}
/// changeImmediateDominator - This method is used to update the dominator
/// tree information when a node's immediate dominator changes.
///
inline void changeImmediateDominator(BasicBlock *N, BasicBlock* NewIDom) {
DT->changeImmediateDominator(N, NewIDom);
}
inline void changeImmediateDominator(DomTreeNode *N, DomTreeNode* NewIDom) {
DT->changeImmediateDominator(N, NewIDom);
}
/// eraseNode - Removes a node from the dominator tree. Block must not
/// dominate any other blocks. Removes node from its immediate dominator's
/// children list. Deletes dominator node associated with basic block BB.
inline void eraseNode(BasicBlock *BB) {
DT->eraseNode(BB);
}
/// splitBlock - BB is split and now it has one successor. Update dominator
/// tree to reflect this change.
inline void splitBlock(BasicBlock* NewBB) {
DT->splitBlock(NewBB);
}
bool isReachableFromEntry(const BasicBlock* A) const {
return DT->isReachableFromEntry(A);
}
bool isReachableFromEntry(const Use &U) const;
virtual void releaseMemory() {
DT->releaseMemory();
}
virtual void print(raw_ostream &OS, const Module* M= 0) const;
};
//===-------------------------------------
/// DominatorTree GraphTraits specialization so the DominatorTree can be
/// iterable by generic graph iterators.
///
template <> struct GraphTraits<DomTreeNode*> {
typedef DomTreeNode NodeType;
typedef NodeType::iterator ChildIteratorType;
static NodeType *getEntryNode(NodeType *N) {
return N;
}
static inline ChildIteratorType child_begin(NodeType *N) {
return N->begin();
}
static inline ChildIteratorType child_end(NodeType *N) {
return N->end();
}
typedef df_iterator<DomTreeNode*> nodes_iterator;
static nodes_iterator nodes_begin(DomTreeNode *N) {
return df_begin(getEntryNode(N));
}
static nodes_iterator nodes_end(DomTreeNode *N) {
return df_end(getEntryNode(N));
}
};
template <> struct GraphTraits<DominatorTree*>
: public GraphTraits<DomTreeNode*> {
static NodeType *getEntryNode(DominatorTree *DT) {
return DT->getRootNode();
}
static nodes_iterator nodes_begin(DominatorTree *N) {
return df_begin(getEntryNode(N));
}
static nodes_iterator nodes_end(DominatorTree *N) {
return df_end(getEntryNode(N));
}
};
} // End llvm namespace
#endif

View File

@@ -0,0 +1,66 @@
//===- llvm/Analysis/FindUsedTypes.h - Find all Types in use ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass is used to seek out all of the types in use by the program.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_FINDUSEDTYPES_H
#define LLVM_ANALYSIS_FINDUSEDTYPES_H
#include "llvm/ADT/SetVector.h"
#include "llvm/Pass.h"
namespace llvm {
class Type;
class Value;
class FindUsedTypes : public ModulePass {
SetVector<Type *> UsedTypes;
public:
static char ID; // Pass identification, replacement for typeid
FindUsedTypes() : ModulePass(ID) {
initializeFindUsedTypesPass(*PassRegistry::getPassRegistry());
}
/// getTypes - After the pass has been run, return the set containing all of
/// the types used in the module.
///
const SetVector<Type *> &getTypes() const { return UsedTypes; }
/// Print the types found in the module. If the optional Module parameter is
/// passed in, then the types are printed symbolically if possible, using the
/// symbol table from the module.
///
void print(raw_ostream &o, const Module *M) const;
private:
/// IncorporateType - Incorporate one type and all of its subtypes into the
/// collection of used types.
///
void IncorporateType(Type *Ty);
/// IncorporateValue - Incorporate all of the types used by this value.
///
void IncorporateValue(const Value *V);
public:
/// run - This incorporates all types used by the specified module
bool runOnModule(Module &M);
/// getAnalysisUsage - We do not modify anything.
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
}
};
} // End llvm namespace
#endif

View File

@@ -0,0 +1,184 @@
//===- llvm/Analysis/IVUsers.h - Induction Variable Users -------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements bookkeeping for "interesting" users of expressions
// computed from induction variables.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_IVUSERS_H
#define LLVM_ANALYSIS_IVUSERS_H
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolutionNormalization.h"
#include "llvm/Support/ValueHandle.h"
namespace llvm {
class DominatorTree;
class Instruction;
class Value;
class ScalarEvolution;
class SCEV;
class IVUsers;
class DataLayout;
/// IVStrideUse - Keep track of one use of a strided induction variable.
/// The Expr member keeps track of the expression, User is the actual user
/// instruction of the operand, and 'OperandValToReplace' is the operand of
/// the User that is the use.
class IVStrideUse : public CallbackVH, public ilist_node<IVStrideUse> {
friend class IVUsers;
public:
IVStrideUse(IVUsers *P, Instruction* U, Value *O)
: CallbackVH(U), Parent(P), OperandValToReplace(O) {
}
/// getUser - Return the user instruction for this use.
Instruction *getUser() const {
return cast<Instruction>(getValPtr());
}
/// setUser - Assign a new user instruction for this use.
void setUser(Instruction *NewUser) {
setValPtr(NewUser);
}
/// getOperandValToReplace - Return the Value of the operand in the user
/// instruction that this IVStrideUse is representing.
Value *getOperandValToReplace() const {
return OperandValToReplace;
}
/// setOperandValToReplace - Assign a new Value as the operand value
/// to replace.
void setOperandValToReplace(Value *Op) {
OperandValToReplace = Op;
}
/// getPostIncLoops - Return the set of loops for which the expression has
/// been adjusted to use post-inc mode.
const PostIncLoopSet &getPostIncLoops() const {
return PostIncLoops;
}
/// transformToPostInc - Transform the expression to post-inc form for the
/// given loop.
void transformToPostInc(const Loop *L);
private:
/// Parent - a pointer to the IVUsers that owns this IVStrideUse.
IVUsers *Parent;
/// OperandValToReplace - The Value of the operand in the user instruction
/// that this IVStrideUse is representing.
WeakVH OperandValToReplace;
/// PostIncLoops - The set of loops for which Expr has been adjusted to
/// use post-inc mode. This corresponds with SCEVExpander's post-inc concept.
PostIncLoopSet PostIncLoops;
/// Deleted - Implementation of CallbackVH virtual function to
/// receive notification when the User is deleted.
virtual void deleted();
};
template<> struct ilist_traits<IVStrideUse>
: public ilist_default_traits<IVStrideUse> {
// createSentinel is used to get hold of a node that marks the end of
// the list...
// The sentinel is relative to this instance, so we use a non-static
// method.
IVStrideUse *createSentinel() const {
// since i(p)lists always publicly derive from the corresponding
// traits, placing a data member in this class will augment i(p)list.
// But since the NodeTy is expected to publicly derive from
// ilist_node<NodeTy>, there is a legal viable downcast from it
// to NodeTy. We use this trick to superpose i(p)list with a "ghostly"
// NodeTy, which becomes the sentinel. Dereferencing the sentinel is
// forbidden (save the ilist_node<NodeTy>) so no one will ever notice
// the superposition.
return static_cast<IVStrideUse*>(&Sentinel);
}
static void destroySentinel(IVStrideUse*) {}
IVStrideUse *provideInitialHead() const { return createSentinel(); }
IVStrideUse *ensureHead(IVStrideUse*) const { return createSentinel(); }
static void noteHead(IVStrideUse*, IVStrideUse*) {}
private:
mutable ilist_node<IVStrideUse> Sentinel;
};
class IVUsers : public LoopPass {
friend class IVStrideUse;
Loop *L;
LoopInfo *LI;
DominatorTree *DT;
ScalarEvolution *SE;
DataLayout *TD;
SmallPtrSet<Instruction*,16> Processed;
/// IVUses - A list of all tracked IV uses of induction variable expressions
/// we are interested in.
ilist<IVStrideUse> IVUses;
virtual void getAnalysisUsage(AnalysisUsage &AU) const;
virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
virtual void releaseMemory();
public:
static char ID; // Pass ID, replacement for typeid
IVUsers();
Loop *getLoop() const { return L; }
/// AddUsersIfInteresting - Inspect the specified Instruction. If it is a
/// reducible SCEV, recursively add its users to the IVUsesByStride set and
/// return true. Otherwise, return false.
bool AddUsersIfInteresting(Instruction *I);
IVStrideUse &AddUser(Instruction *User, Value *Operand);
/// getReplacementExpr - Return a SCEV expression which computes the
/// value of the OperandValToReplace of the given IVStrideUse.
const SCEV *getReplacementExpr(const IVStrideUse &IU) const;
/// getExpr - Return the expression for the use.
const SCEV *getExpr(const IVStrideUse &IU) const;
const SCEV *getStride(const IVStrideUse &IU, const Loop *L) const;
typedef ilist<IVStrideUse>::iterator iterator;
typedef ilist<IVStrideUse>::const_iterator const_iterator;
iterator begin() { return IVUses.begin(); }
iterator end() { return IVUses.end(); }
const_iterator begin() const { return IVUses.begin(); }
const_iterator end() const { return IVUses.end(); }
bool empty() const { return IVUses.empty(); }
bool isIVUserOrOperand(Instruction *Inst) const {
return Processed.count(Inst);
}
void print(raw_ostream &OS, const Module* = 0) const;
/// dump - This method is used for debugging.
void dump() const;
protected:
bool AddUsersImpl(Instruction *I, SmallPtrSet<Loop*,16> &SimpleLoopNests);
};
Pass *createIVUsersPass();
}
#endif

View File

@@ -0,0 +1,143 @@
//===- InlineCost.h - Cost analysis for inliner -----------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements heuristics for inlining decisions.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_INLINECOST_H
#define LLVM_ANALYSIS_INLINECOST_H
#include "llvm/Analysis/CodeMetrics.h"
#include "llvm/Analysis/CallGraphSCCPass.h"
#include <cassert>
#include <climits>
namespace llvm {
class CallSite;
class DataLayout;
class Function;
class TargetTransformInfo;
namespace InlineConstants {
// Various magic constants used to adjust heuristics.
const int InstrCost = 5;
const int IndirectCallThreshold = 100;
const int CallPenalty = 25;
const int LastCallToStaticBonus = -15000;
const int ColdccPenalty = 2000;
const int NoreturnPenalty = 10000;
/// Do not inline functions which allocate this many bytes on the stack
/// when the caller is recursive.
const unsigned TotalAllocaSizeRecursiveCaller = 1024;
}
/// \brief Represents the cost of inlining a function.
///
/// This supports special values for functions which should "always" or
/// "never" be inlined. Otherwise, the cost represents a unitless amount;
/// smaller values increase the likelihood of the function being inlined.
///
/// Objects of this type also provide the adjusted threshold for inlining
/// based on the information available for a particular callsite. They can be
/// directly tested to determine if inlining should occur given the cost and
/// threshold for this cost metric.
class InlineCost {
enum SentinelValues {
AlwaysInlineCost = INT_MIN,
NeverInlineCost = INT_MAX
};
/// \brief The estimated cost of inlining this callsite.
const int Cost;
/// \brief The adjusted threshold against which this cost was computed.
const int Threshold;
// Trivial constructor, interesting logic in the factory functions below.
InlineCost(int Cost, int Threshold) : Cost(Cost), Threshold(Threshold) {}
public:
static InlineCost get(int Cost, int Threshold) {
assert(Cost > AlwaysInlineCost && "Cost crosses sentinel value");
assert(Cost < NeverInlineCost && "Cost crosses sentinel value");
return InlineCost(Cost, Threshold);
}
static InlineCost getAlways() {
return InlineCost(AlwaysInlineCost, 0);
}
static InlineCost getNever() {
return InlineCost(NeverInlineCost, 0);
}
/// \brief Test whether the inline cost is low enough for inlining.
operator bool() const {
return Cost < Threshold;
}
bool isAlways() const { return Cost == AlwaysInlineCost; }
bool isNever() const { return Cost == NeverInlineCost; }
bool isVariable() const { return !isAlways() && !isNever(); }
/// \brief Get the inline cost estimate.
/// It is an error to call this on an "always" or "never" InlineCost.
int getCost() const {
assert(isVariable() && "Invalid access of InlineCost");
return Cost;
}
/// \brief Get the cost delta from the threshold for inlining.
/// Only valid if the cost is of the variable kind. Returns a negative
/// value if the cost is too high to inline.
int getCostDelta() const { return Threshold - getCost(); }
};
/// \brief Cost analyzer used by inliner.
class InlineCostAnalysis : public CallGraphSCCPass {
const DataLayout *TD;
const TargetTransformInfo *TTI;
public:
static char ID;
InlineCostAnalysis();
~InlineCostAnalysis();
// Pass interface implementation.
void getAnalysisUsage(AnalysisUsage &AU) const;
bool runOnSCC(CallGraphSCC &SCC);
/// \brief Get an InlineCost object representing the cost of inlining this
/// callsite.
///
/// Note that threshold is passed into this function. Only costs below the
/// threshold are computed with any accuracy. The threshold can be used to
/// bound the computation necessary to determine whether the cost is
/// sufficiently low to warrant inlining.
///
/// Also note that calling this function *dynamically* computes the cost of
/// inlining the callsite. It is an expensive, heavyweight call.
InlineCost getInlineCost(CallSite CS, int Threshold);
/// \brief Get an InlineCost with the callee explicitly specified.
/// This allows you to calculate the cost of inlining a function via a
/// pointer. This behaves exactly as the version with no explicit callee
/// parameter in all other respects.
//
// Note: This is used by out-of-tree passes, please do not remove without
// adding a replacement API.
InlineCost getInlineCost(CallSite CS, Function *Callee, int Threshold);
/// \brief Minimal filter to detect invalid constructs for inlining.
bool isInlineViable(Function &Callee);
};
}
#endif

View File

@@ -0,0 +1,274 @@
//===-- InstructionSimplify.h - Fold instructions into simpler forms ------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares routines for folding instructions into simpler forms
// that do not require creating new instructions. This does constant folding
// ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
// returning a constant ("and i32 %x, 0" -> "0") or an already existing value
// ("and i32 %x, %x" -> "%x"). If the simplification is also an instruction
// then it dominates the original instruction.
//
// These routines implicitly resolve undef uses. The easiest way to be safe when
// using these routines to obtain simplified values for existing instructions is
// to always replace all uses of the instructions with the resulting simplified
// values. This will prevent other code from seeing the same undef uses and
// resolving them to different values.
//
// These routines are designed to tolerate moderately incomplete IR, such as
// instructions that are not connected to basic blocks yet. However, they do
// require that all the IR that they encounter be valid. In particular, they
// require that all non-constant values be defined in the same function, and the
// same call context of that function (and not split between caller and callee
// contexts of a directly recursive call, for example).
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_INSTRUCTIONSIMPLIFY_H
#define LLVM_ANALYSIS_INSTRUCTIONSIMPLIFY_H
#include "llvm/IR/User.h"
namespace llvm {
template<typename T>
class ArrayRef;
class DominatorTree;
class Instruction;
class DataLayout;
class FastMathFlags;
class TargetLibraryInfo;
class Type;
class Value;
/// SimplifyAddInst - Given operands for an Add, see if we can
/// fold the result. If not, this returns null.
Value *SimplifyAddInst(Value *LHS, Value *RHS, bool isNSW, bool isNUW,
const DataLayout *TD = 0,
const TargetLibraryInfo *TLI = 0,
const DominatorTree *DT = 0);
/// SimplifySubInst - Given operands for a Sub, see if we can
/// fold the result. If not, this returns null.
Value *SimplifySubInst(Value *LHS, Value *RHS, bool isNSW, bool isNUW,
const DataLayout *TD = 0,
const TargetLibraryInfo *TLI = 0,
const DominatorTree *DT = 0);
/// Given operands for an FAdd, see if we can fold the result. If not, this
/// returns null.
Value *SimplifyFAddInst(Value *LHS, Value *RHS, FastMathFlags FMF,
const DataLayout *TD = 0,
const TargetLibraryInfo *TLI = 0,
const DominatorTree *DT = 0);
/// Given operands for an FSub, see if we can fold the result. If not, this
/// returns null.
Value *SimplifyFSubInst(Value *LHS, Value *RHS, FastMathFlags FMF,
const DataLayout *TD = 0,
const TargetLibraryInfo *TLI = 0,
const DominatorTree *DT = 0);
/// Given operands for an FMul, see if we can fold the result. If not, this
/// returns null.
Value *SimplifyFMulInst(Value *LHS, Value *RHS,
FastMathFlags FMF,
const DataLayout *TD = 0,
const TargetLibraryInfo *TLI = 0,
const DominatorTree *DT = 0);
/// SimplifyMulInst - Given operands for a Mul, see if we can
/// fold the result. If not, this returns null.
Value *SimplifyMulInst(Value *LHS, Value *RHS, const DataLayout *TD = 0,
const TargetLibraryInfo *TLI = 0,
const DominatorTree *DT = 0);
/// SimplifySDivInst - Given operands for an SDiv, see if we can
/// fold the result. If not, this returns null.
Value *SimplifySDivInst(Value *LHS, Value *RHS, const DataLayout *TD = 0,
const TargetLibraryInfo *TLI = 0,
const DominatorTree *DT = 0);
/// SimplifyUDivInst - Given operands for a UDiv, see if we can
/// fold the result. If not, this returns null.
Value *SimplifyUDivInst(Value *LHS, Value *RHS, const DataLayout *TD = 0,
const TargetLibraryInfo *TLI = 0,
const DominatorTree *DT = 0);
/// SimplifyFDivInst - Given operands for an FDiv, see if we can
/// fold the result. If not, this returns null.
Value *SimplifyFDivInst(Value *LHS, Value *RHS, const DataLayout *TD = 0,
const TargetLibraryInfo *TLI = 0,
const DominatorTree *DT = 0);
/// SimplifySRemInst - Given operands for an SRem, see if we can
/// fold the result. If not, this returns null.
Value *SimplifySRemInst(Value *LHS, Value *RHS, const DataLayout *TD = 0,
const TargetLibraryInfo *TLI = 0,
const DominatorTree *DT = 0);
/// SimplifyURemInst - Given operands for a URem, see if we can
/// fold the result. If not, this returns null.
Value *SimplifyURemInst(Value *LHS, Value *RHS, const DataLayout *TD = 0,
const TargetLibraryInfo *TLI = 0,
const DominatorTree *DT = 0);
/// SimplifyFRemInst - Given operands for an FRem, see if we can
/// fold the result. If not, this returns null.
Value *SimplifyFRemInst(Value *LHS, Value *RHS, const DataLayout *TD = 0,
const TargetLibraryInfo *TLI = 0,
const DominatorTree *DT = 0);
/// SimplifyShlInst - Given operands for a Shl, see if we can
/// fold the result. If not, this returns null.
Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
const DataLayout *TD = 0,
const TargetLibraryInfo *TLI = 0,
const DominatorTree *DT = 0);
/// SimplifyLShrInst - Given operands for a LShr, see if we can
/// fold the result. If not, this returns null.
Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
const DataLayout *TD = 0,
const TargetLibraryInfo *TLI = 0,
const DominatorTree *DT = 0);
/// SimplifyAShrInst - Given operands for a AShr, see if we can
/// fold the result. If not, this returns null.
Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
const DataLayout *TD = 0,
const TargetLibraryInfo *TLI = 0,
const DominatorTree *DT = 0);
/// SimplifyAndInst - Given operands for an And, see if we can
/// fold the result. If not, this returns null.
Value *SimplifyAndInst(Value *LHS, Value *RHS, const DataLayout *TD = 0,
const TargetLibraryInfo *TLI = 0,
const DominatorTree *DT = 0);
/// SimplifyOrInst - Given operands for an Or, see if we can
/// fold the result. If not, this returns null.
Value *SimplifyOrInst(Value *LHS, Value *RHS, const DataLayout *TD = 0,
const TargetLibraryInfo *TLI = 0,
const DominatorTree *DT = 0);
/// SimplifyXorInst - Given operands for a Xor, see if we can
/// fold the result. If not, this returns null.
Value *SimplifyXorInst(Value *LHS, Value *RHS, const DataLayout *TD = 0,
const TargetLibraryInfo *TLI = 0,
const DominatorTree *DT = 0);
/// SimplifyICmpInst - Given operands for an ICmpInst, see if we can
/// fold the result. If not, this returns null.
Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
const DataLayout *TD = 0,
const TargetLibraryInfo *TLI = 0,
const DominatorTree *DT = 0);
/// SimplifyFCmpInst - Given operands for an FCmpInst, see if we can
/// fold the result. If not, this returns null.
Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
const DataLayout *TD = 0,
const TargetLibraryInfo *TLI = 0,
const DominatorTree *DT = 0);
/// SimplifySelectInst - Given operands for a SelectInst, see if we can fold
/// the result. If not, this returns null.
Value *SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
const DataLayout *TD = 0,
const TargetLibraryInfo *TLI = 0,
const DominatorTree *DT = 0);
/// SimplifyGEPInst - Given operands for an GetElementPtrInst, see if we can
/// fold the result. If not, this returns null.
Value *SimplifyGEPInst(ArrayRef<Value *> Ops, const DataLayout *TD = 0,
const TargetLibraryInfo *TLI = 0,
const DominatorTree *DT = 0);
/// SimplifyInsertValueInst - Given operands for an InsertValueInst, see if we
/// can fold the result. If not, this returns null.
Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
ArrayRef<unsigned> Idxs,
const DataLayout *TD = 0,
const TargetLibraryInfo *TLI = 0,
const DominatorTree *DT = 0);
/// SimplifyTruncInst - Given operands for an TruncInst, see if we can fold
/// the result. If not, this returns null.
Value *SimplifyTruncInst(Value *Op, Type *Ty, const DataLayout *TD = 0,
const TargetLibraryInfo *TLI = 0,
const DominatorTree *DT = 0);
//=== Helper functions for higher up the class hierarchy.
/// SimplifyCmpInst - Given operands for a CmpInst, see if we can
/// fold the result. If not, this returns null.
Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
const DataLayout *TD = 0,
const TargetLibraryInfo *TLI = 0,
const DominatorTree *DT = 0);
/// SimplifyBinOp - Given operands for a BinaryOperator, see if we can
/// fold the result. If not, this returns null.
Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
const DataLayout *TD = 0,
const TargetLibraryInfo *TLI = 0,
const DominatorTree *DT = 0);
/// \brief Given a function and iterators over arguments, see if we can fold
/// the result.
///
/// If this call could not be simplified returns null.
Value *SimplifyCall(Value *V, User::op_iterator ArgBegin,
User::op_iterator ArgEnd, const DataLayout *TD = 0,
const TargetLibraryInfo *TLI = 0,
const DominatorTree *DT = 0);
/// \brief Given a function and set of arguments, see if we can fold the
/// result.
///
/// If this call could not be simplified returns null.
Value *SimplifyCall(Value *V, ArrayRef<Value *> Args,
const DataLayout *TD = 0,
const TargetLibraryInfo *TLI = 0,
const DominatorTree *DT = 0);
/// SimplifyInstruction - See if we can compute a simplified version of this
/// instruction. If not, this returns null.
Value *SimplifyInstruction(Instruction *I, const DataLayout *TD = 0,
const TargetLibraryInfo *TLI = 0,
const DominatorTree *DT = 0);
/// \brief Replace all uses of 'I' with 'SimpleV' and simplify the uses
/// recursively.
///
/// This first performs a normal RAUW of I with SimpleV. It then recursively
/// attempts to simplify those users updated by the operation. The 'I'
/// instruction must not be equal to the simplified value 'SimpleV'.
///
/// The function returns true if any simplifications were performed.
bool replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV,
const DataLayout *TD = 0,
const TargetLibraryInfo *TLI = 0,
const DominatorTree *DT = 0);
/// \brief Recursively attempt to simplify an instruction.
///
/// This routine uses SimplifyInstruction to simplify 'I', and if successful
/// replaces uses of 'I' with the simplified value. It then recurses on each
/// of the users impacted. It returns true if any simplifications were
/// performed.
bool recursivelySimplifyInstruction(Instruction *I,
const DataLayout *TD = 0,
const TargetLibraryInfo *TLI = 0,
const DominatorTree *DT = 0);
} // end namespace llvm
#endif

View File

@@ -0,0 +1,153 @@
//===- llvm/Analysis/Interval.h - Interval Class Declaration ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the declaration of the Interval class, which
// represents a set of CFG nodes and is a portion of an interval partition.
//
// Intervals have some interesting and useful properties, including the
// following:
// 1. The header node of an interval dominates all of the elements of the
// interval
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_INTERVAL_H
#define LLVM_ANALYSIS_INTERVAL_H
#include "llvm/ADT/GraphTraits.h"
#include <vector>
namespace llvm {
class BasicBlock;
class raw_ostream;
//===----------------------------------------------------------------------===//
//
/// Interval Class - An Interval is a set of nodes defined such that every node
/// in the interval has all of its predecessors in the interval (except for the
/// header)
///
class Interval {
/// HeaderNode - The header BasicBlock, which dominates all BasicBlocks in this
/// interval. Also, any loops in this interval must go through the HeaderNode.
///
BasicBlock *HeaderNode;
public:
typedef std::vector<BasicBlock*>::iterator succ_iterator;
typedef std::vector<BasicBlock*>::iterator pred_iterator;
typedef std::vector<BasicBlock*>::iterator node_iterator;
inline Interval(BasicBlock *Header) : HeaderNode(Header) {
Nodes.push_back(Header);
}
inline Interval(const Interval &I) // copy ctor
: HeaderNode(I.HeaderNode), Nodes(I.Nodes), Successors(I.Successors) {}
inline BasicBlock *getHeaderNode() const { return HeaderNode; }
/// Nodes - The basic blocks in this interval.
///
std::vector<BasicBlock*> Nodes;
/// Successors - List of BasicBlocks that are reachable directly from nodes in
/// this interval, but are not in the interval themselves.
/// These nodes necessarily must be header nodes for other intervals.
///
std::vector<BasicBlock*> Successors;
/// Predecessors - List of BasicBlocks that have this Interval's header block
/// as one of their successors.
///
std::vector<BasicBlock*> Predecessors;
/// contains - Find out if a basic block is in this interval
inline bool contains(BasicBlock *BB) const {
for (unsigned i = 0; i < Nodes.size(); ++i)
if (Nodes[i] == BB) return true;
return false;
// I don't want the dependency on <algorithm>
//return find(Nodes.begin(), Nodes.end(), BB) != Nodes.end();
}
/// isSuccessor - find out if a basic block is a successor of this Interval
inline bool isSuccessor(BasicBlock *BB) const {
for (unsigned i = 0; i < Successors.size(); ++i)
if (Successors[i] == BB) return true;
return false;
// I don't want the dependency on <algorithm>
//return find(Successors.begin(), Successors.end(), BB) != Successors.end();
}
/// Equality operator. It is only valid to compare two intervals from the
/// same partition, because of this, all we have to check is the header node
/// for equality.
///
inline bool operator==(const Interval &I) const {
return HeaderNode == I.HeaderNode;
}
/// isLoop - Find out if there is a back edge in this interval...
bool isLoop() const;
/// print - Show contents in human readable format...
void print(raw_ostream &O) const;
};
/// succ_begin/succ_end - define methods so that Intervals may be used
/// just like BasicBlocks can with the succ_* functions, and *::succ_iterator.
///
inline Interval::succ_iterator succ_begin(Interval *I) {
return I->Successors.begin();
}
inline Interval::succ_iterator succ_end(Interval *I) {
return I->Successors.end();
}
/// pred_begin/pred_end - define methods so that Intervals may be used
/// just like BasicBlocks can with the pred_* functions, and *::pred_iterator.
///
inline Interval::pred_iterator pred_begin(Interval *I) {
return I->Predecessors.begin();
}
inline Interval::pred_iterator pred_end(Interval *I) {
return I->Predecessors.end();
}
template <> struct GraphTraits<Interval*> {
typedef Interval NodeType;
typedef Interval::succ_iterator ChildIteratorType;
static NodeType *getEntryNode(Interval *I) { return I; }
/// nodes_iterator/begin/end - Allow iteration over all nodes in the graph
static inline ChildIteratorType child_begin(NodeType *N) {
return succ_begin(N);
}
static inline ChildIteratorType child_end(NodeType *N) {
return succ_end(N);
}
};
template <> struct GraphTraits<Inverse<Interval*> > {
typedef Interval NodeType;
typedef Interval::pred_iterator ChildIteratorType;
static NodeType *getEntryNode(Inverse<Interval *> G) { return G.Graph; }
static inline ChildIteratorType child_begin(NodeType *N) {
return pred_begin(N);
}
static inline ChildIteratorType child_end(NodeType *N) {
return pred_end(N);
}
};
} // End llvm namespace
#endif

View File

@@ -0,0 +1,259 @@
//===- IntervalIterator.h - Interval Iterator Declaration -------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines an iterator that enumerates the intervals in a control flow
// graph of some sort. This iterator is parametric, allowing iterator over the
// following types of graphs:
//
// 1. A Function* object, composed of BasicBlock nodes.
// 2. An IntervalPartition& object, composed of Interval nodes.
//
// This iterator is defined to walk the control flow graph, returning intervals
// in depth first order. These intervals are completely filled in except for
// the predecessor fields (the successor information is filled in however).
//
// By default, the intervals created by this iterator are deleted after they
// are no longer any use to the iterator. This behavior can be changed by
// passing a false value into the intervals_begin() function. This causes the
// IOwnMem member to be set, and the intervals to not be deleted.
//
// It is only safe to use this if all of the intervals are deleted by the caller
// and all of the intervals are processed. However, the user of the iterator is
// not allowed to modify or delete the intervals until after the iterator has
// been used completely. The IntervalPartition class uses this functionality.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_INTERVALITERATOR_H
#define LLVM_ANALYSIS_INTERVALITERATOR_H
#include "llvm/Analysis/IntervalPartition.h"
#include "llvm/IR/Function.h"
#include "llvm/Support/CFG.h"
#include <algorithm>
#include <set>
#include <vector>
namespace llvm {
// getNodeHeader - Given a source graph node and the source graph, return the
// BasicBlock that is the header node. This is the opposite of
// getSourceGraphNode.
//
inline BasicBlock *getNodeHeader(BasicBlock *BB) { return BB; }
inline BasicBlock *getNodeHeader(Interval *I) { return I->getHeaderNode(); }
// getSourceGraphNode - Given a BasicBlock and the source graph, return the
// source graph node that corresponds to the BasicBlock. This is the opposite
// of getNodeHeader.
//
inline BasicBlock *getSourceGraphNode(Function *, BasicBlock *BB) {
return BB;
}
inline Interval *getSourceGraphNode(IntervalPartition *IP, BasicBlock *BB) {
return IP->getBlockInterval(BB);
}
// addNodeToInterval - This method exists to assist the generic ProcessNode
// with the task of adding a node to the new interval, depending on the
// type of the source node. In the case of a CFG source graph (BasicBlock
// case), the BasicBlock itself is added to the interval.
//
inline void addNodeToInterval(Interval *Int, BasicBlock *BB) {
Int->Nodes.push_back(BB);
}
// addNodeToInterval - This method exists to assist the generic ProcessNode
// with the task of adding a node to the new interval, depending on the
// type of the source node. In the case of a CFG source graph (BasicBlock
// case), the BasicBlock itself is added to the interval. In the case of
// an IntervalPartition source graph (Interval case), all of the member
// BasicBlocks are added to the interval.
//
inline void addNodeToInterval(Interval *Int, Interval *I) {
// Add all of the nodes in I as new nodes in Int.
copy(I->Nodes.begin(), I->Nodes.end(), back_inserter(Int->Nodes));
}
template<class NodeTy, class OrigContainer_t, class GT = GraphTraits<NodeTy*>,
class IGT = GraphTraits<Inverse<NodeTy*> > >
class IntervalIterator {
std::vector<std::pair<Interval*, typename Interval::succ_iterator> > IntStack;
std::set<BasicBlock*> Visited;
OrigContainer_t *OrigContainer;
bool IOwnMem; // If True, delete intervals when done with them
// See file header for conditions of use
public:
typedef IntervalIterator<NodeTy, OrigContainer_t> _Self;
typedef std::forward_iterator_tag iterator_category;
IntervalIterator() {} // End iterator, empty stack
IntervalIterator(Function *M, bool OwnMemory) : IOwnMem(OwnMemory) {
OrigContainer = M;
if (!ProcessInterval(&M->front())) {
llvm_unreachable("ProcessInterval should never fail for first interval!");
}
}
IntervalIterator(IntervalPartition &IP, bool OwnMemory) : IOwnMem(OwnMemory) {
OrigContainer = &IP;
if (!ProcessInterval(IP.getRootInterval())) {
llvm_unreachable("ProcessInterval should never fail for first interval!");
}
}
inline ~IntervalIterator() {
if (IOwnMem)
while (!IntStack.empty()) {
delete operator*();
IntStack.pop_back();
}
}
inline bool operator==(const _Self& x) const { return IntStack == x.IntStack;}
inline bool operator!=(const _Self& x) const { return !operator==(x); }
inline const Interval *operator*() const { return IntStack.back().first; }
inline Interval *operator*() { return IntStack.back().first; }
inline const Interval *operator->() const { return operator*(); }
inline Interval *operator->() { return operator*(); }
_Self& operator++() { // Preincrement
assert(!IntStack.empty() && "Attempting to use interval iterator at end!");
do {
// All of the intervals on the stack have been visited. Try visiting
// their successors now.
Interval::succ_iterator &SuccIt = IntStack.back().second,
EndIt = succ_end(IntStack.back().first);
while (SuccIt != EndIt) { // Loop over all interval succs
bool Done = ProcessInterval(getSourceGraphNode(OrigContainer, *SuccIt));
++SuccIt; // Increment iterator
if (Done) return *this; // Found a new interval! Use it!
}
// Free interval memory... if necessary
if (IOwnMem) delete IntStack.back().first;
// We ran out of successors for this interval... pop off the stack
IntStack.pop_back();
} while (!IntStack.empty());
return *this;
}
inline _Self operator++(int) { // Postincrement
_Self tmp = *this; ++*this; return tmp;
}
private:
// ProcessInterval - This method is used during the construction of the
// interval graph. It walks through the source graph, recursively creating
// an interval per invocation until the entire graph is covered. This uses
// the ProcessNode method to add all of the nodes to the interval.
//
// This method is templated because it may operate on two different source
// graphs: a basic block graph, or a preexisting interval graph.
//
bool ProcessInterval(NodeTy *Node) {
BasicBlock *Header = getNodeHeader(Node);
if (Visited.count(Header)) return false;
Interval *Int = new Interval(Header);
Visited.insert(Header); // The header has now been visited!
// Check all of our successors to see if they are in the interval...
for (typename GT::ChildIteratorType I = GT::child_begin(Node),
E = GT::child_end(Node); I != E; ++I)
ProcessNode(Int, getSourceGraphNode(OrigContainer, *I));
IntStack.push_back(std::make_pair(Int, succ_begin(Int)));
return true;
}
// ProcessNode - This method is called by ProcessInterval to add nodes to the
// interval being constructed, and it is also called recursively as it walks
// the source graph. A node is added to the current interval only if all of
// its predecessors are already in the graph. This also takes care of keeping
// the successor set of an interval up to date.
//
// This method is templated because it may operate on two different source
// graphs: a basic block graph, or a preexisting interval graph.
//
void ProcessNode(Interval *Int, NodeTy *Node) {
assert(Int && "Null interval == bad!");
assert(Node && "Null Node == bad!");
BasicBlock *NodeHeader = getNodeHeader(Node);
if (Visited.count(NodeHeader)) { // Node already been visited?
if (Int->contains(NodeHeader)) { // Already in this interval...
return;
} else { // In other interval, add as successor
if (!Int->isSuccessor(NodeHeader)) // Add only if not already in set
Int->Successors.push_back(NodeHeader);
}
} else { // Otherwise, not in interval yet
for (typename IGT::ChildIteratorType I = IGT::child_begin(Node),
E = IGT::child_end(Node); I != E; ++I) {
if (!Int->contains(*I)) { // If pred not in interval, we can't be
if (!Int->isSuccessor(NodeHeader)) // Add only if not already in set
Int->Successors.push_back(NodeHeader);
return; // See you later
}
}
// If we get here, then all of the predecessors of BB are in the interval
// already. In this case, we must add BB to the interval!
addNodeToInterval(Int, Node);
Visited.insert(NodeHeader); // The node has now been visited!
if (Int->isSuccessor(NodeHeader)) {
// If we were in the successor list from before... remove from succ list
Int->Successors.erase(std::remove(Int->Successors.begin(),
Int->Successors.end(), NodeHeader),
Int->Successors.end());
}
// Now that we have discovered that Node is in the interval, perhaps some
// of its successors are as well?
for (typename GT::ChildIteratorType It = GT::child_begin(Node),
End = GT::child_end(Node); It != End; ++It)
ProcessNode(Int, getSourceGraphNode(OrigContainer, *It));
}
}
};
typedef IntervalIterator<BasicBlock, Function> function_interval_iterator;
typedef IntervalIterator<Interval, IntervalPartition>
interval_part_interval_iterator;
inline function_interval_iterator intervals_begin(Function *F,
bool DeleteInts = true) {
return function_interval_iterator(F, DeleteInts);
}
inline function_interval_iterator intervals_end(Function *) {
return function_interval_iterator();
}
inline interval_part_interval_iterator
intervals_begin(IntervalPartition &IP, bool DeleteIntervals = true) {
return interval_part_interval_iterator(IP, DeleteIntervals);
}
inline interval_part_interval_iterator intervals_end(IntervalPartition &IP) {
return interval_part_interval_iterator();
}
} // End llvm namespace
#endif

View File

@@ -0,0 +1,111 @@
//===- IntervalPartition.h - Interval partition Calculation -----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the declaration of the IntervalPartition class, which
// calculates and represents the interval partition of a function, or a
// preexisting interval partition.
//
// In this way, the interval partition may be used to reduce a flow graph down
// to its degenerate single node interval partition (unless it is irreducible).
//
// TODO: The IntervalPartition class should take a bool parameter that tells
// whether it should add the "tails" of an interval to an interval itself or if
// they should be represented as distinct intervals.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_INTERVALPARTITION_H
#define LLVM_ANALYSIS_INTERVALPARTITION_H
#include "llvm/Analysis/Interval.h"
#include "llvm/Pass.h"
#include <map>
namespace llvm {
//===----------------------------------------------------------------------===//
//
// IntervalPartition - This class builds and holds an "interval partition" for
// a function. This partition divides the control flow graph into a set of
// maximal intervals, as defined with the properties above. Intuitively, an
// interval is a (possibly nonexistent) loop with a "tail" of non looping
// nodes following it.
//
class IntervalPartition : public FunctionPass {
typedef std::map<BasicBlock*, Interval*> IntervalMapTy;
IntervalMapTy IntervalMap;
typedef std::vector<Interval*> IntervalListTy;
Interval *RootInterval;
std::vector<Interval*> Intervals;
public:
static char ID; // Pass identification, replacement for typeid
IntervalPartition() : FunctionPass(ID), RootInterval(0) {
initializeIntervalPartitionPass(*PassRegistry::getPassRegistry());
}
// run - Calculate the interval partition for this function
virtual bool runOnFunction(Function &F);
// IntervalPartition ctor - Build a reduced interval partition from an
// existing interval graph. This takes an additional boolean parameter to
// distinguish it from a copy constructor. Always pass in false for now.
//
IntervalPartition(IntervalPartition &I, bool);
// print - Show contents in human readable format...
virtual void print(raw_ostream &O, const Module* = 0) const;
// getRootInterval() - Return the root interval that contains the starting
// block of the function.
inline Interval *getRootInterval() { return RootInterval; }
// isDegeneratePartition() - Returns true if the interval partition contains
// a single interval, and thus cannot be simplified anymore.
bool isDegeneratePartition() { return Intervals.size() == 1; }
// TODO: isIrreducible - look for triangle graph.
// getBlockInterval - Return the interval that a basic block exists in.
inline Interval *getBlockInterval(BasicBlock *BB) {
IntervalMapTy::iterator I = IntervalMap.find(BB);
return I != IntervalMap.end() ? I->second : 0;
}
// getAnalysisUsage - Implement the Pass API
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
}
// Interface to Intervals vector...
const std::vector<Interval*> &getIntervals() const { return Intervals; }
// releaseMemory - Reset state back to before function was analyzed
void releaseMemory();
private:
// addIntervalToPartition - Add an interval to the internal list of intervals,
// and then add mappings from all of the basic blocks in the interval to the
// interval itself (in the IntervalMap).
//
void addIntervalToPartition(Interval *I);
// updatePredecessors - Interval generation only sets the successor fields of
// the interval data structures. After interval generation is complete,
// run through all of the intervals and propagate successor info as
// predecessor info.
//
void updatePredecessors(Interval *Int);
};
} // End llvm namespace
#endif

View File

@@ -0,0 +1,81 @@
//===- LazyValueInfo.h - Value constraint analysis --------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the interface for lazy computation of value constraint
// information.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_LAZYVALUEINFO_H
#define LLVM_ANALYSIS_LAZYVALUEINFO_H
#include "llvm/Pass.h"
namespace llvm {
class Constant;
class DataLayout;
class TargetLibraryInfo;
class Value;
/// LazyValueInfo - This pass computes, caches, and vends lazy value constraint
/// information.
class LazyValueInfo : public FunctionPass {
class DataLayout *TD;
class TargetLibraryInfo *TLI;
void *PImpl;
LazyValueInfo(const LazyValueInfo&) LLVM_DELETED_FUNCTION;
void operator=(const LazyValueInfo&) LLVM_DELETED_FUNCTION;
public:
static char ID;
LazyValueInfo() : FunctionPass(ID), PImpl(0) {
initializeLazyValueInfoPass(*PassRegistry::getPassRegistry());
}
~LazyValueInfo() { assert(PImpl == 0 && "releaseMemory not called"); }
/// Tristate - This is used to return true/false/dunno results.
enum Tristate {
Unknown = -1, False = 0, True = 1
};
// Public query interface.
/// getPredicateOnEdge - Determine whether the specified value comparison
/// with a constant is known to be true or false on the specified CFG edge.
/// Pred is a CmpInst predicate.
Tristate getPredicateOnEdge(unsigned Pred, Value *V, Constant *C,
BasicBlock *FromBB, BasicBlock *ToBB);
/// getConstant - Determine whether the specified value is known to be a
/// constant at the end of the specified block. Return null if not.
Constant *getConstant(Value *V, BasicBlock *BB);
/// getConstantOnEdge - Determine whether the specified value is known to be a
/// constant on the specified edge. Return null if not.
Constant *getConstantOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB);
/// threadEdge - Inform the analysis cache that we have threaded an edge from
/// PredBB to OldSucc to be from PredBB to NewSucc instead.
void threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc, BasicBlock *NewSucc);
/// eraseBlock - Inform the analysis cache that we have erased a block.
void eraseBlock(BasicBlock *BB);
// Implementation boilerplate.
virtual void getAnalysisUsage(AnalysisUsage &AU) const;
virtual void releaseMemory();
virtual bool runOnFunction(Function &F);
};
} // end namespace llvm
#endif

View File

@@ -0,0 +1,73 @@
//===- LibCallAliasAnalysis.h - Implement AliasAnalysis for libcalls ------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the LibCallAliasAnalysis class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_LIBCALLALIASANALYSIS_H
#define LLVM_ANALYSIS_LIBCALLALIASANALYSIS_H
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Pass.h"
namespace llvm {
class LibCallInfo;
struct LibCallFunctionInfo;
/// LibCallAliasAnalysis - Alias analysis driven from LibCallInfo.
struct LibCallAliasAnalysis : public FunctionPass, public AliasAnalysis {
static char ID; // Class identification
LibCallInfo *LCI;
explicit LibCallAliasAnalysis(LibCallInfo *LC = 0)
: FunctionPass(ID), LCI(LC) {
initializeLibCallAliasAnalysisPass(*PassRegistry::getPassRegistry());
}
explicit LibCallAliasAnalysis(char &ID, LibCallInfo *LC)
: FunctionPass(ID), LCI(LC) {
initializeLibCallAliasAnalysisPass(*PassRegistry::getPassRegistry());
}
~LibCallAliasAnalysis();
ModRefResult getModRefInfo(ImmutableCallSite CS,
const Location &Loc);
ModRefResult getModRefInfo(ImmutableCallSite CS1,
ImmutableCallSite CS2) {
// TODO: Could compare two direct calls against each other if we cared to.
return AliasAnalysis::getModRefInfo(CS1, CS2);
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const;
virtual bool runOnFunction(Function &F) {
InitializeAliasAnalysis(this); // set up super class
return false;
}
/// getAdjustedAnalysisPointer - This method is used when a pass implements
/// an analysis interface through multiple inheritance. If needed, it
/// should override this to adjust the this pointer as needed for the
/// specified pass info.
virtual void *getAdjustedAnalysisPointer(const void *PI) {
if (PI == &AliasAnalysis::ID)
return (AliasAnalysis*)this;
return this;
}
private:
ModRefResult AnalyzeLibCallDetails(const LibCallFunctionInfo *FI,
ImmutableCallSite CS,
const Location &Loc);
};
} // End of llvm namespace
#endif

View File

@@ -0,0 +1,167 @@
//===- LibCallSemantics.h - Describe library semantics --------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines interfaces that can be used to describe language specific
// runtime library interfaces (e.g. libc, libm, etc) to LLVM optimizers.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_LIBCALLSEMANTICS_H
#define LLVM_ANALYSIS_LIBCALLSEMANTICS_H
#include "llvm/Analysis/AliasAnalysis.h"
namespace llvm {
/// LibCallLocationInfo - This struct describes a set of memory locations that
/// are accessed by libcalls. Identification of a location is doing with a
/// simple callback function.
///
/// For example, the LibCallInfo may be set up to model the behavior of
/// standard libm functions. The location that they may be interested in is
/// an abstract location that represents errno for the current target. In
/// this case, a location for errno is anything such that the predicate
/// returns true. On Mac OS/X, this predicate would return true if the
/// pointer is the result of a call to "__error()".
///
/// Locations can also be defined in a constant-sensitive way. For example,
/// it is possible to define a location that returns true iff it is passed
/// into the call as a specific argument. This is useful for modeling things
/// like "printf", which can store to memory, but only through pointers passed
/// with a '%n' constraint.
///
struct LibCallLocationInfo {
// TODO: Flags: isContextSensitive etc.
/// isLocation - Return a LocResult if the specified pointer refers to this
/// location for the specified call site. This returns "Yes" if we can tell
/// that the pointer *does definitely* refer to the location, "No" if we can
/// tell that the location *definitely does not* refer to the location, and
/// returns "Unknown" if we cannot tell for certain.
enum LocResult {
Yes, No, Unknown
};
LocResult (*isLocation)(ImmutableCallSite CS,
const AliasAnalysis::Location &Loc);
};
/// LibCallFunctionInfo - Each record in the array of FunctionInfo structs
/// records the behavior of one libcall that is known by the optimizer. This
/// captures things like the side effects of the call. Side effects are
/// modeled both universally (in the readnone/readonly) sense, but also
/// potentially against a set of abstract locations defined by the optimizer.
/// This allows an optimizer to define that some libcall (e.g. sqrt) is
/// side-effect free except that it might modify errno (thus, the call is
/// *not* universally readonly). Or it might say that the side effects
/// are unknown other than to say that errno is not modified.
///
struct LibCallFunctionInfo {
/// Name - This is the name of the libcall this describes.
const char *Name;
/// TODO: Constant folding function: Constant* vector -> Constant*.
/// UniversalBehavior - This captures the absolute mod/ref behavior without
/// any specific context knowledge. For example, if the function is known
/// to be readonly, this would be set to 'ref'. If known to be readnone,
/// this is set to NoModRef.
AliasAnalysis::ModRefResult UniversalBehavior;
/// LocationMRInfo - This pair captures info about whether a specific
/// location is modified or referenced by a libcall.
struct LocationMRInfo {
/// LocationID - ID # of the accessed location or ~0U for array end.
unsigned LocationID;
/// MRInfo - Mod/Ref info for this location.
AliasAnalysis::ModRefResult MRInfo;
};
/// DetailsType - Indicate the sense of the LocationDetails array. This
/// controls how the LocationDetails array is interpreted.
enum {
/// DoesOnly - If DetailsType is set to DoesOnly, then we know that the
/// *only* mod/ref behavior of this function is captured by the
/// LocationDetails array. If we are trying to say that 'sqrt' can only
/// modify errno, we'd have the {errnoloc,mod} in the LocationDetails
/// array and have DetailsType set to DoesOnly.
DoesOnly,
/// DoesNot - If DetailsType is set to DoesNot, then the sense of the
/// LocationDetails array is completely inverted. This means that we *do
/// not* know everything about the side effects of this libcall, but we do
/// know things that the libcall cannot do. This is useful for complex
/// functions like 'ctime' which have crazy mod/ref behavior, but are
/// known to never read or write errno. In this case, we'd have
/// {errnoloc,modref} in the LocationDetails array and DetailsType would
/// be set to DoesNot, indicating that ctime does not read or write the
/// errno location.
DoesNot
} DetailsType;
/// LocationDetails - This is a pointer to an array of LocationMRInfo
/// structs which indicates the behavior of the libcall w.r.t. specific
/// locations. For example, if this libcall is known to only modify
/// 'errno', it would have a LocationDetails array with the errno ID and
/// 'mod' in it. See the DetailsType field for how this is interpreted.
///
/// In the "DoesOnly" case, this information is 'may' information for: there
/// is no guarantee that the specified side effect actually does happen,
/// just that it could. In the "DoesNot" case, this is 'must not' info.
///
/// If this pointer is null, no details are known.
///
const LocationMRInfo *LocationDetails;
};
/// LibCallInfo - Abstract interface to query about library call information.
/// Instances of this class return known information about some set of
/// libcalls.
///
class LibCallInfo {
// Implementation details of this object, private.
mutable void *Impl;
mutable const LibCallLocationInfo *Locations;
mutable unsigned NumLocations;
public:
LibCallInfo() : Impl(0), Locations(0), NumLocations(0) {}
virtual ~LibCallInfo();
//===------------------------------------------------------------------===//
// Accessor Methods: Efficient access to contained data.
//===------------------------------------------------------------------===//
/// getLocationInfo - Return information about the specified LocationID.
const LibCallLocationInfo &getLocationInfo(unsigned LocID) const;
/// getFunctionInfo - Return the LibCallFunctionInfo object corresponding to
/// the specified function if we have it. If not, return null.
const LibCallFunctionInfo *getFunctionInfo(const Function *F) const;
//===------------------------------------------------------------------===//
// Implementation Methods: Subclasses should implement these.
//===------------------------------------------------------------------===//
/// getLocationInfo - Return descriptors for the locations referenced by
/// this set of libcalls.
virtual unsigned getLocationInfo(const LibCallLocationInfo *&Array) const {
return 0;
}
/// getFunctionInfoArray - Return an array of descriptors that describe the
/// set of libcalls represented by this LibCallInfo object. This array is
/// terminated by an entry with a NULL name.
virtual const LibCallFunctionInfo *getFunctionInfoArray() const = 0;
};
} // end namespace llvm
#endif

View File

@@ -0,0 +1,49 @@
//===-- llvm/Analysis/Lint.h - LLVM IR Lint ---------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines lint interfaces that can be used for some sanity checking
// of input to the system, and for checking that transformations
// haven't done something bad. In contrast to the Verifier, the Lint checker
// checks for undefined behavior or constructions with likely unintended
// behavior.
//
// To see what specifically is checked, look at Lint.cpp
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_LINT_H
#define LLVM_ANALYSIS_LINT_H
namespace llvm {
class FunctionPass;
class Module;
class Function;
/// @brief Create a lint pass.
///
/// Check a module or function.
FunctionPass *createLintPass();
/// @brief Check a module.
///
/// This should only be used for debugging, because it plays games with
/// PassManagers and stuff.
void lintModule(
const Module &M ///< The module to be checked
);
// lintFunction - Check a function.
void lintFunction(
const Function &F ///< The function to be checked
);
} // End llvm namespace
#endif

View File

@@ -0,0 +1,57 @@
//===- Loads.h - Local load analysis --------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares simple local analyses for load instructions.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_LOADS_H
#define LLVM_ANALYSIS_LOADS_H
#include "llvm/IR/BasicBlock.h"
namespace llvm {
class AliasAnalysis;
class DataLayout;
class MDNode;
/// isSafeToLoadUnconditionally - Return true if we know that executing a load
/// from this value cannot trap. If it is not obviously safe to load from the
/// specified pointer, we do a quick local scan of the basic block containing
/// ScanFrom, to determine if the address is already accessed.
bool isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom,
unsigned Align, const DataLayout *TD = 0);
/// FindAvailableLoadedValue - Scan the ScanBB block backwards (starting at
/// the instruction before ScanFrom) checking to see if we have the value at
/// the memory address *Ptr locally available within a small number of
/// instructions. If the value is available, return it.
///
/// If not, return the iterator for the last validated instruction that the
/// value would be live through. If we scanned the entire block and didn't
/// find something that invalidates *Ptr or provides it, ScanFrom would be
/// left at begin() and this returns null. ScanFrom could also be left
///
/// MaxInstsToScan specifies the maximum instructions to scan in the block.
/// If it is set to 0, it will scan the whole block. You can also optionally
/// specify an alias analysis implementation, which makes this more precise.
///
/// If TBAATag is non-null and a load or store is found, the TBAA tag from the
/// load or store is recorded there. If there is no TBAA tag or if no access
/// is found, it is left unmodified.
Value *FindAvailableLoadedValue(Value *Ptr, BasicBlock *ScanBB,
BasicBlock::iterator &ScanFrom,
unsigned MaxInstsToScan = 6,
AliasAnalysis *AA = 0,
MDNode **TBAATag = 0);
}
#endif

View File

@@ -0,0 +1,124 @@
//===- llvm/Analysis/LoopDependenceAnalysis.h --------------- -*- C++ -*---===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// LoopDependenceAnalysis is an LLVM pass that analyses dependences in memory
// accesses in loops.
//
// Please note that this is work in progress and the interface is subject to
// change.
//
// TODO: adapt as interface progresses
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_LOOP_DEPENDENCE_ANALYSIS_H
#define LLVM_ANALYSIS_LOOP_DEPENDENCE_ANALYSIS_H
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Support/Allocator.h"
namespace llvm {
class AliasAnalysis;
class AnalysisUsage;
class ScalarEvolution;
class SCEV;
class Value;
class raw_ostream;
class LoopDependenceAnalysis : public LoopPass {
AliasAnalysis *AA;
ScalarEvolution *SE;
/// L - The loop we are currently analysing.
Loop *L;
/// TODO: doc
enum DependenceResult { Independent = 0, Dependent = 1, Unknown = 2 };
/// TODO: doc
struct Subscript {
/// TODO: Add distance, direction, breaking conditions, ...
};
/// DependencePair - Represents a data dependence relation between to memory
/// reference instructions.
struct DependencePair : public FastFoldingSetNode {
Value *A;
Value *B;
DependenceResult Result;
SmallVector<Subscript, 4> Subscripts;
DependencePair(const FoldingSetNodeID &ID, Value *a, Value *b) :
FastFoldingSetNode(ID), A(a), B(b), Result(Unknown), Subscripts() {}
};
/// findOrInsertDependencePair - Return true if a DependencePair for the
/// given Values already exists, false if a new DependencePair had to be
/// created. The third argument is set to the pair found or created.
bool findOrInsertDependencePair(Value*, Value*, DependencePair*&);
/// getLoops - Collect all loops of the loop nest L in which
/// a given SCEV is variant.
void getLoops(const SCEV*, DenseSet<const Loop*>*) const;
/// isLoopInvariant - True if a given SCEV is invariant in all loops of the
/// loop nest starting at the innermost loop L.
bool isLoopInvariant(const SCEV*) const;
/// isAffine - An SCEV is affine with respect to the loop nest starting at
/// the innermost loop L if it is of the form A+B*X where A, B are invariant
/// in the loop nest and X is a induction variable in the loop nest.
bool isAffine(const SCEV*) const;
/// TODO: doc
bool isZIVPair(const SCEV*, const SCEV*) const;
bool isSIVPair(const SCEV*, const SCEV*) const;
DependenceResult analyseZIV(const SCEV*, const SCEV*, Subscript*) const;
DependenceResult analyseSIV(const SCEV*, const SCEV*, Subscript*) const;
DependenceResult analyseMIV(const SCEV*, const SCEV*, Subscript*) const;
DependenceResult analyseSubscript(const SCEV*, const SCEV*, Subscript*) const;
DependenceResult analysePair(DependencePair*) const;
public:
static char ID; // Class identification, replacement for typeinfo
LoopDependenceAnalysis() : LoopPass(ID) {
initializeLoopDependenceAnalysisPass(*PassRegistry::getPassRegistry());
}
/// isDependencePair - Check whether two values can possibly give rise to
/// a data dependence: that is the case if both are instructions accessing
/// memory and at least one of those accesses is a write.
bool isDependencePair(const Value*, const Value*) const;
/// depends - Return a boolean indicating if there is a data dependence
/// between two instructions.
bool depends(Value*, Value*);
bool runOnLoop(Loop*, LPPassManager&);
virtual void releaseMemory();
virtual void getAnalysisUsage(AnalysisUsage&) const;
void print(raw_ostream&, const Module* = 0) const;
private:
FoldingSet<DependencePair> Pairs;
BumpPtrAllocator PairAllocator;
}; // class LoopDependenceAnalysis
// createLoopDependenceAnalysisPass - This creates an instance of the
// LoopDependenceAnalysis pass.
//
LoopPass *createLoopDependenceAnalysisPass();
} // namespace llvm
#endif /* LLVM_ANALYSIS_LOOP_DEPENDENCE_ANALYSIS_H */

View File

@@ -0,0 +1,710 @@
//===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the LoopInfo class that is used to identify natural loops
// and determine the loop depth of various nodes of the CFG. A natural loop
// has exactly one entry-point, which is called the header. Note that natural
// loops may actually be several loops that share the same header node.
//
// This analysis calculates the nesting structure of loops in a function. For
// each natural loop identified, this analysis identifies natural loops
// contained entirely within the loop and the basic blocks the make up the loop.
//
// It can calculate on the fly various bits of information, for example:
//
// * whether there is a preheader for the loop
// * the number of back edges to the header
// * whether or not a particular block branches out of the loop
// * the successor blocks of the loop
// * the loop depth
// * etc...
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_LOOPINFO_H
#define LLVM_ANALYSIS_LOOPINFO_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Pass.h"
#include <algorithm>
namespace llvm {
template<typename T>
inline void RemoveFromVector(std::vector<T*> &V, T *N) {
typename std::vector<T*>::iterator I = std::find(V.begin(), V.end(), N);
assert(I != V.end() && "N is not in this list!");
V.erase(I);
}
class DominatorTree;
class LoopInfo;
class Loop;
class PHINode;
class raw_ostream;
template<class N, class M> class LoopInfoBase;
template<class N, class M> class LoopBase;
//===----------------------------------------------------------------------===//
/// LoopBase class - Instances of this class are used to represent loops that
/// are detected in the flow graph
///
template<class BlockT, class LoopT>
class LoopBase {
LoopT *ParentLoop;
// SubLoops - Loops contained entirely within this one.
std::vector<LoopT *> SubLoops;
// Blocks - The list of blocks in this loop. First entry is the header node.
std::vector<BlockT*> Blocks;
LoopBase(const LoopBase<BlockT, LoopT> &) LLVM_DELETED_FUNCTION;
const LoopBase<BlockT, LoopT>&
operator=(const LoopBase<BlockT, LoopT> &) LLVM_DELETED_FUNCTION;
public:
/// Loop ctor - This creates an empty loop.
LoopBase() : ParentLoop(0) {}
~LoopBase() {
for (size_t i = 0, e = SubLoops.size(); i != e; ++i)
delete SubLoops[i];
}
/// getLoopDepth - Return the nesting level of this loop. An outer-most
/// loop has depth 1, for consistency with loop depth values used for basic
/// blocks, where depth 0 is used for blocks not inside any loops.
unsigned getLoopDepth() const {
unsigned D = 1;
for (const LoopT *CurLoop = ParentLoop; CurLoop;
CurLoop = CurLoop->ParentLoop)
++D;
return D;
}
BlockT *getHeader() const { return Blocks.front(); }
LoopT *getParentLoop() const { return ParentLoop; }
/// setParentLoop is a raw interface for bypassing addChildLoop.
void setParentLoop(LoopT *L) { ParentLoop = L; }
/// contains - Return true if the specified loop is contained within in
/// this loop.
///
bool contains(const LoopT *L) const {
if (L == this) return true;
if (L == 0) return false;
return contains(L->getParentLoop());
}
/// contains - Return true if the specified basic block is in this loop.
///
bool contains(const BlockT *BB) const {
return std::find(block_begin(), block_end(), BB) != block_end();
}
/// contains - Return true if the specified instruction is in this loop.
///
template<class InstT>
bool contains(const InstT *Inst) const {
return contains(Inst->getParent());
}
/// iterator/begin/end - Return the loops contained entirely within this loop.
///
const std::vector<LoopT *> &getSubLoops() const { return SubLoops; }
std::vector<LoopT *> &getSubLoopsVector() { return SubLoops; }
typedef typename std::vector<LoopT *>::const_iterator iterator;
typedef typename std::vector<LoopT *>::const_reverse_iterator
reverse_iterator;
iterator begin() const { return SubLoops.begin(); }
iterator end() const { return SubLoops.end(); }
reverse_iterator rbegin() const { return SubLoops.rbegin(); }
reverse_iterator rend() const { return SubLoops.rend(); }
bool empty() const { return SubLoops.empty(); }
/// getBlocks - Get a list of the basic blocks which make up this loop.
///
const std::vector<BlockT*> &getBlocks() const { return Blocks; }
std::vector<BlockT*> &getBlocksVector() { return Blocks; }
typedef typename std::vector<BlockT*>::const_iterator block_iterator;
block_iterator block_begin() const { return Blocks.begin(); }
block_iterator block_end() const { return Blocks.end(); }
/// getNumBlocks - Get the number of blocks in this loop in constant time.
unsigned getNumBlocks() const {
return Blocks.size();
}
/// isLoopExiting - True if terminator in the block can branch to another
/// block that is outside of the current loop.
///
bool isLoopExiting(const BlockT *BB) const {
typedef GraphTraits<const BlockT*> BlockTraits;
for (typename BlockTraits::ChildIteratorType SI =
BlockTraits::child_begin(BB),
SE = BlockTraits::child_end(BB); SI != SE; ++SI) {
if (!contains(*SI))
return true;
}
return false;
}
/// getNumBackEdges - Calculate the number of back edges to the loop header
///
unsigned getNumBackEdges() const {
unsigned NumBackEdges = 0;
BlockT *H = getHeader();
typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
for (typename InvBlockTraits::ChildIteratorType I =
InvBlockTraits::child_begin(H),
E = InvBlockTraits::child_end(H); I != E; ++I)
if (contains(*I))
++NumBackEdges;
return NumBackEdges;
}
//===--------------------------------------------------------------------===//
// APIs for simple analysis of the loop.
//
// Note that all of these methods can fail on general loops (ie, there may not
// be a preheader, etc). For best success, the loop simplification and
// induction variable canonicalization pass should be used to normalize loops
// for easy analysis. These methods assume canonical loops.
/// getExitingBlocks - Return all blocks inside the loop that have successors
/// outside of the loop. These are the blocks _inside of the current loop_
/// which branch out. The returned list is always unique.
///
void getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const;
/// getExitingBlock - If getExitingBlocks would return exactly one block,
/// return that block. Otherwise return null.
BlockT *getExitingBlock() const;
/// getExitBlocks - Return all of the successor blocks of this loop. These
/// are the blocks _outside of the current loop_ which are branched to.
///
void getExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const;
/// getExitBlock - If getExitBlocks would return exactly one block,
/// return that block. Otherwise return null.
BlockT *getExitBlock() const;
/// Edge type.
typedef std::pair<const BlockT*, const BlockT*> Edge;
/// getExitEdges - Return all pairs of (_inside_block_,_outside_block_).
void getExitEdges(SmallVectorImpl<Edge> &ExitEdges) const;
/// getLoopPreheader - If there is a preheader for this loop, return it. A
/// loop has a preheader if there is only one edge to the header of the loop
/// from outside of the loop. If this is the case, the block branching to the
/// header of the loop is the preheader node.
///
/// This method returns null if there is no preheader for the loop.
///
BlockT *getLoopPreheader() const;
/// getLoopPredecessor - If the given loop's header has exactly one unique
/// predecessor outside the loop, return it. Otherwise return null.
/// This is less strict that the loop "preheader" concept, which requires
/// the predecessor to have exactly one successor.
///
BlockT *getLoopPredecessor() const;
/// getLoopLatch - If there is a single latch block for this loop, return it.
/// A latch block is a block that contains a branch back to the header.
BlockT *getLoopLatch() const;
//===--------------------------------------------------------------------===//
// APIs for updating loop information after changing the CFG
//
/// addBasicBlockToLoop - This method is used by other analyses to update loop
/// information. NewBB is set to be a new member of the current loop.
/// Because of this, it is added as a member of all parent loops, and is added
/// to the specified LoopInfo object as being in the current basic block. It
/// is not valid to replace the loop header with this method.
///
void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LI);
/// replaceChildLoopWith - This is used when splitting loops up. It replaces
/// the OldChild entry in our children list with NewChild, and updates the
/// parent pointer of OldChild to be null and the NewChild to be this loop.
/// This updates the loop depth of the new child.
void replaceChildLoopWith(LoopT *OldChild, LoopT *NewChild);
/// addChildLoop - Add the specified loop to be a child of this loop. This
/// updates the loop depth of the new child.
///
void addChildLoop(LoopT *NewChild) {
assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
NewChild->ParentLoop = static_cast<LoopT *>(this);
SubLoops.push_back(NewChild);
}
/// removeChildLoop - This removes the specified child from being a subloop of
/// this loop. The loop is not deleted, as it will presumably be inserted
/// into another loop.
LoopT *removeChildLoop(iterator I) {
assert(I != SubLoops.end() && "Cannot remove end iterator!");
LoopT *Child = *I;
assert(Child->ParentLoop == this && "Child is not a child of this loop!");
SubLoops.erase(SubLoops.begin()+(I-begin()));
Child->ParentLoop = 0;
return Child;
}
/// addBlockEntry - This adds a basic block directly to the basic block list.
/// This should only be used by transformations that create new loops. Other
/// transformations should use addBasicBlockToLoop.
void addBlockEntry(BlockT *BB) {
Blocks.push_back(BB);
}
/// moveToHeader - This method is used to move BB (which must be part of this
/// loop) to be the loop header of the loop (the block that dominates all
/// others).
void moveToHeader(BlockT *BB) {
if (Blocks[0] == BB) return;
for (unsigned i = 0; ; ++i) {
assert(i != Blocks.size() && "Loop does not contain BB!");
if (Blocks[i] == BB) {
Blocks[i] = Blocks[0];
Blocks[0] = BB;
return;
}
}
}
/// removeBlockFromLoop - This removes the specified basic block from the
/// current loop, updating the Blocks as appropriate. This does not update
/// the mapping in the LoopInfo class.
void removeBlockFromLoop(BlockT *BB) {
RemoveFromVector(Blocks, BB);
}
/// verifyLoop - Verify loop structure
void verifyLoop() const;
/// verifyLoop - Verify loop structure of this loop and all nested loops.
void verifyLoopNest(DenseSet<const LoopT*> *Loops) const;
void print(raw_ostream &OS, unsigned Depth = 0) const;
protected:
friend class LoopInfoBase<BlockT, LoopT>;
explicit LoopBase(BlockT *BB) : ParentLoop(0) {
Blocks.push_back(BB);
}
};
template<class BlockT, class LoopT>
raw_ostream& operator<<(raw_ostream &OS, const LoopBase<BlockT, LoopT> &Loop) {
Loop.print(OS);
return OS;
}
// Implementation in LoopInfoImpl.h
#ifdef __GNUC__
__extension__ extern template class LoopBase<BasicBlock, Loop>;
#endif
class Loop : public LoopBase<BasicBlock, Loop> {
public:
Loop() {}
/// isLoopInvariant - Return true if the specified value is loop invariant
///
bool isLoopInvariant(Value *V) const;
/// hasLoopInvariantOperands - Return true if all the operands of the
/// specified instruction are loop invariant.
bool hasLoopInvariantOperands(Instruction *I) const;
/// makeLoopInvariant - If the given value is an instruction inside of the
/// loop and it can be hoisted, do so to make it trivially loop-invariant.
/// Return true if the value after any hoisting is loop invariant. This
/// function can be used as a slightly more aggressive replacement for
/// isLoopInvariant.
///
/// If InsertPt is specified, it is the point to hoist instructions to.
/// If null, the terminator of the loop preheader is used.
///
bool makeLoopInvariant(Value *V, bool &Changed,
Instruction *InsertPt = 0) const;
/// makeLoopInvariant - If the given instruction is inside of the
/// loop and it can be hoisted, do so to make it trivially loop-invariant.
/// Return true if the instruction after any hoisting is loop invariant. This
/// function can be used as a slightly more aggressive replacement for
/// isLoopInvariant.
///
/// If InsertPt is specified, it is the point to hoist instructions to.
/// If null, the terminator of the loop preheader is used.
///
bool makeLoopInvariant(Instruction *I, bool &Changed,
Instruction *InsertPt = 0) const;
/// getCanonicalInductionVariable - Check to see if the loop has a canonical
/// induction variable: an integer recurrence that starts at 0 and increments
/// by one each time through the loop. If so, return the phi node that
/// corresponds to it.
///
/// The IndVarSimplify pass transforms loops to have a canonical induction
/// variable.
///
PHINode *getCanonicalInductionVariable() const;
/// isLCSSAForm - Return true if the Loop is in LCSSA form
bool isLCSSAForm(DominatorTree &DT) const;
/// isLoopSimplifyForm - Return true if the Loop is in the form that
/// the LoopSimplify form transforms loops to, which is sometimes called
/// normal form.
bool isLoopSimplifyForm() const;
/// isSafeToClone - Return true if the loop body is safe to clone in practice.
bool isSafeToClone() const;
/// Returns true if the loop is annotated parallel.
///
/// A parallel loop can be assumed to not contain any dependencies between
/// iterations by the compiler. That is, any loop-carried dependency checking
/// can be skipped completely when parallelizing the loop on the target
/// machine. Thus, if the parallel loop information originates from the
/// programmer, e.g. via the OpenMP parallel for pragma, it is the
/// programmer's responsibility to ensure there are no loop-carried
/// dependencies. The final execution order of the instructions across
/// iterations is not guaranteed, thus, the end result might or might not
/// implement actual concurrent execution of instructions across multiple
/// iterations.
bool isAnnotatedParallel() const;
/// hasDedicatedExits - Return true if no exit block for the loop
/// has a predecessor that is outside the loop.
bool hasDedicatedExits() const;
/// getUniqueExitBlocks - Return all unique successor blocks of this loop.
/// These are the blocks _outside of the current loop_ which are branched to.
/// This assumes that loop exits are in canonical form.
///
void getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const;
/// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one
/// block, return that block. Otherwise return null.
BasicBlock *getUniqueExitBlock() const;
void dump() const;
private:
friend class LoopInfoBase<BasicBlock, Loop>;
explicit Loop(BasicBlock *BB) : LoopBase<BasicBlock, Loop>(BB) {}
};
//===----------------------------------------------------------------------===//
/// LoopInfo - This class builds and contains all of the top level loop
/// structures in the specified function.
///
template<class BlockT, class LoopT>
class LoopInfoBase {
// BBMap - Mapping of basic blocks to the inner most loop they occur in
DenseMap<BlockT *, LoopT *> BBMap;
std::vector<LoopT *> TopLevelLoops;
friend class LoopBase<BlockT, LoopT>;
friend class LoopInfo;
void operator=(const LoopInfoBase &) LLVM_DELETED_FUNCTION;
LoopInfoBase(const LoopInfo &) LLVM_DELETED_FUNCTION;
public:
LoopInfoBase() { }
~LoopInfoBase() { releaseMemory(); }
void releaseMemory() {
for (typename std::vector<LoopT *>::iterator I =
TopLevelLoops.begin(), E = TopLevelLoops.end(); I != E; ++I)
delete *I; // Delete all of the loops...
BBMap.clear(); // Reset internal state of analysis
TopLevelLoops.clear();
}
/// iterator/begin/end - The interface to the top-level loops in the current
/// function.
///
typedef typename std::vector<LoopT *>::const_iterator iterator;
typedef typename std::vector<LoopT *>::const_reverse_iterator
reverse_iterator;
iterator begin() const { return TopLevelLoops.begin(); }
iterator end() const { return TopLevelLoops.end(); }
reverse_iterator rbegin() const { return TopLevelLoops.rbegin(); }
reverse_iterator rend() const { return TopLevelLoops.rend(); }
bool empty() const { return TopLevelLoops.empty(); }
/// getLoopFor - Return the inner most loop that BB lives in. If a basic
/// block is in no loop (for example the entry node), null is returned.
///
LoopT *getLoopFor(const BlockT *BB) const {
return BBMap.lookup(const_cast<BlockT*>(BB));
}
/// operator[] - same as getLoopFor...
///
const LoopT *operator[](const BlockT *BB) const {
return getLoopFor(BB);
}
/// getLoopDepth - Return the loop nesting level of the specified block. A
/// depth of 0 means the block is not inside any loop.
///
unsigned getLoopDepth(const BlockT *BB) const {
const LoopT *L = getLoopFor(BB);
return L ? L->getLoopDepth() : 0;
}
// isLoopHeader - True if the block is a loop header node
bool isLoopHeader(BlockT *BB) const {
const LoopT *L = getLoopFor(BB);
return L && L->getHeader() == BB;
}
/// removeLoop - This removes the specified top-level loop from this loop info
/// object. The loop is not deleted, as it will presumably be inserted into
/// another loop.
LoopT *removeLoop(iterator I) {
assert(I != end() && "Cannot remove end iterator!");
LoopT *L = *I;
assert(L->getParentLoop() == 0 && "Not a top-level loop!");
TopLevelLoops.erase(TopLevelLoops.begin() + (I-begin()));
return L;
}
/// changeLoopFor - Change the top-level loop that contains BB to the
/// specified loop. This should be used by transformations that restructure
/// the loop hierarchy tree.
void changeLoopFor(BlockT *BB, LoopT *L) {
if (!L) {
BBMap.erase(BB);
return;
}
BBMap[BB] = L;
}
/// changeTopLevelLoop - Replace the specified loop in the top-level loops
/// list with the indicated loop.
void changeTopLevelLoop(LoopT *OldLoop,
LoopT *NewLoop) {
typename std::vector<LoopT *>::iterator I =
std::find(TopLevelLoops.begin(), TopLevelLoops.end(), OldLoop);
assert(I != TopLevelLoops.end() && "Old loop not at top level!");
*I = NewLoop;
assert(NewLoop->ParentLoop == 0 && OldLoop->ParentLoop == 0 &&
"Loops already embedded into a subloop!");
}
/// addTopLevelLoop - This adds the specified loop to the collection of
/// top-level loops.
void addTopLevelLoop(LoopT *New) {
assert(New->getParentLoop() == 0 && "Loop already in subloop!");
TopLevelLoops.push_back(New);
}
/// removeBlock - This method completely removes BB from all data structures,
/// including all of the Loop objects it is nested in and our mapping from
/// BasicBlocks to loops.
void removeBlock(BlockT *BB) {
typename DenseMap<BlockT *, LoopT *>::iterator I = BBMap.find(BB);
if (I != BBMap.end()) {
for (LoopT *L = I->second; L; L = L->getParentLoop())
L->removeBlockFromLoop(BB);
BBMap.erase(I);
}
}
// Internals
static bool isNotAlreadyContainedIn(const LoopT *SubLoop,
const LoopT *ParentLoop) {
if (SubLoop == 0) return true;
if (SubLoop == ParentLoop) return false;
return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop);
}
/// Create the loop forest using a stable algorithm.
void Analyze(DominatorTreeBase<BlockT> &DomTree);
// Debugging
void print(raw_ostream &OS) const;
};
// Implementation in LoopInfoImpl.h
#ifdef __GNUC__
__extension__ extern template class LoopInfoBase<BasicBlock, Loop>;
#endif
class LoopInfo : public FunctionPass {
LoopInfoBase<BasicBlock, Loop> LI;
friend class LoopBase<BasicBlock, Loop>;
void operator=(const LoopInfo &) LLVM_DELETED_FUNCTION;
LoopInfo(const LoopInfo &) LLVM_DELETED_FUNCTION;
public:
static char ID; // Pass identification, replacement for typeid
LoopInfo() : FunctionPass(ID) {
initializeLoopInfoPass(*PassRegistry::getPassRegistry());
}
LoopInfoBase<BasicBlock, Loop>& getBase() { return LI; }
/// iterator/begin/end - The interface to the top-level loops in the current
/// function.
///
typedef LoopInfoBase<BasicBlock, Loop>::iterator iterator;
typedef LoopInfoBase<BasicBlock, Loop>::reverse_iterator reverse_iterator;
inline iterator begin() const { return LI.begin(); }
inline iterator end() const { return LI.end(); }
inline reverse_iterator rbegin() const { return LI.rbegin(); }
inline reverse_iterator rend() const { return LI.rend(); }
bool empty() const { return LI.empty(); }
/// getLoopFor - Return the inner most loop that BB lives in. If a basic
/// block is in no loop (for example the entry node), null is returned.
///
inline Loop *getLoopFor(const BasicBlock *BB) const {
return LI.getLoopFor(BB);
}
/// operator[] - same as getLoopFor...
///
inline const Loop *operator[](const BasicBlock *BB) const {
return LI.getLoopFor(BB);
}
/// getLoopDepth - Return the loop nesting level of the specified block. A
/// depth of 0 means the block is not inside any loop.
///
inline unsigned getLoopDepth(const BasicBlock *BB) const {
return LI.getLoopDepth(BB);
}
// isLoopHeader - True if the block is a loop header node
inline bool isLoopHeader(BasicBlock *BB) const {
return LI.isLoopHeader(BB);
}
/// runOnFunction - Calculate the natural loop information.
///
virtual bool runOnFunction(Function &F);
virtual void verifyAnalysis() const;
virtual void releaseMemory() { LI.releaseMemory(); }
virtual void print(raw_ostream &O, const Module* M = 0) const;
virtual void getAnalysisUsage(AnalysisUsage &AU) const;
/// removeLoop - This removes the specified top-level loop from this loop info
/// object. The loop is not deleted, as it will presumably be inserted into
/// another loop.
inline Loop *removeLoop(iterator I) { return LI.removeLoop(I); }
/// changeLoopFor - Change the top-level loop that contains BB to the
/// specified loop. This should be used by transformations that restructure
/// the loop hierarchy tree.
inline void changeLoopFor(BasicBlock *BB, Loop *L) {
LI.changeLoopFor(BB, L);
}
/// changeTopLevelLoop - Replace the specified loop in the top-level loops
/// list with the indicated loop.
inline void changeTopLevelLoop(Loop *OldLoop, Loop *NewLoop) {
LI.changeTopLevelLoop(OldLoop, NewLoop);
}
/// addTopLevelLoop - This adds the specified loop to the collection of
/// top-level loops.
inline void addTopLevelLoop(Loop *New) {
LI.addTopLevelLoop(New);
}
/// removeBlock - This method completely removes BB from all data structures,
/// including all of the Loop objects it is nested in and our mapping from
/// BasicBlocks to loops.
void removeBlock(BasicBlock *BB) {
LI.removeBlock(BB);
}
/// updateUnloop - Update LoopInfo after removing the last backedge from a
/// loop--now the "unloop". This updates the loop forest and parent loops for
/// each block so that Unloop is no longer referenced, but the caller must
/// actually delete the Unloop object.
void updateUnloop(Loop *Unloop);
/// replacementPreservesLCSSAForm - Returns true if replacing From with To
/// everywhere is guaranteed to preserve LCSSA form.
bool replacementPreservesLCSSAForm(Instruction *From, Value *To) {
// Preserving LCSSA form is only problematic if the replacing value is an
// instruction.
Instruction *I = dyn_cast<Instruction>(To);
if (!I) return true;
// If both instructions are defined in the same basic block then replacement
// cannot break LCSSA form.
if (I->getParent() == From->getParent())
return true;
// If the instruction is not defined in a loop then it can safely replace
// anything.
Loop *ToLoop = getLoopFor(I->getParent());
if (!ToLoop) return true;
// If the replacing instruction is defined in the same loop as the original
// instruction, or in a loop that contains it as an inner loop, then using
// it as a replacement will not break LCSSA form.
return ToLoop->contains(getLoopFor(From->getParent()));
}
};
// Allow clients to walk the list of nested loops...
template <> struct GraphTraits<const Loop*> {
typedef const Loop NodeType;
typedef LoopInfo::iterator ChildIteratorType;
static NodeType *getEntryNode(const Loop *L) { return L; }
static inline ChildIteratorType child_begin(NodeType *N) {
return N->begin();
}
static inline ChildIteratorType child_end(NodeType *N) {
return N->end();
}
};
template <> struct GraphTraits<Loop*> {
typedef Loop NodeType;
typedef LoopInfo::iterator ChildIteratorType;
static NodeType *getEntryNode(Loop *L) { return L; }
static inline ChildIteratorType child_begin(NodeType *N) {
return N->begin();
}
static inline ChildIteratorType child_end(NodeType *N) {
return N->end();
}
};
} // End llvm namespace
#endif

View File

@@ -0,0 +1,570 @@
//===- llvm/Analysis/LoopInfoImpl.h - Natural Loop Calculator ---*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This is the generic implementation of LoopInfo used for both Loops and
// MachineLoops.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_LOOPINFOIMPL_H
#define LLVM_ANALYSIS_LOOPINFOIMPL_H
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/LoopInfo.h"
namespace llvm {
//===----------------------------------------------------------------------===//
// APIs for simple analysis of the loop. See header notes.
/// getExitingBlocks - Return all blocks inside the loop that have successors
/// outside of the loop. These are the blocks _inside of the current loop_
/// which branch out. The returned list is always unique.
///
template<class BlockT, class LoopT>
void LoopBase<BlockT, LoopT>::
getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const {
// Sort the blocks vector so that we can use binary search to do quick
// lookups.
SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
std::sort(LoopBBs.begin(), LoopBBs.end());
typedef GraphTraits<BlockT*> BlockTraits;
for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
for (typename BlockTraits::ChildIteratorType I =
BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
I != E; ++I)
if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I)) {
// Not in current loop? It must be an exit block.
ExitingBlocks.push_back(*BI);
break;
}
}
/// getExitingBlock - If getExitingBlocks would return exactly one block,
/// return that block. Otherwise return null.
template<class BlockT, class LoopT>
BlockT *LoopBase<BlockT, LoopT>::getExitingBlock() const {
SmallVector<BlockT*, 8> ExitingBlocks;
getExitingBlocks(ExitingBlocks);
if (ExitingBlocks.size() == 1)
return ExitingBlocks[0];
return 0;
}
/// getExitBlocks - Return all of the successor blocks of this loop. These
/// are the blocks _outside of the current loop_ which are branched to.
///
template<class BlockT, class LoopT>
void LoopBase<BlockT, LoopT>::
getExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const {
// Sort the blocks vector so that we can use binary search to do quick
// lookups.
SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
std::sort(LoopBBs.begin(), LoopBBs.end());
typedef GraphTraits<BlockT*> BlockTraits;
for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
for (typename BlockTraits::ChildIteratorType I =
BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
I != E; ++I)
if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
// Not in current loop? It must be an exit block.
ExitBlocks.push_back(*I);
}
/// getExitBlock - If getExitBlocks would return exactly one block,
/// return that block. Otherwise return null.
template<class BlockT, class LoopT>
BlockT *LoopBase<BlockT, LoopT>::getExitBlock() const {
SmallVector<BlockT*, 8> ExitBlocks;
getExitBlocks(ExitBlocks);
if (ExitBlocks.size() == 1)
return ExitBlocks[0];
return 0;
}
/// getExitEdges - Return all pairs of (_inside_block_,_outside_block_).
template<class BlockT, class LoopT>
void LoopBase<BlockT, LoopT>::
getExitEdges(SmallVectorImpl<Edge> &ExitEdges) const {
// Sort the blocks vector so that we can use binary search to do quick
// lookups.
SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
array_pod_sort(LoopBBs.begin(), LoopBBs.end());
typedef GraphTraits<BlockT*> BlockTraits;
for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
for (typename BlockTraits::ChildIteratorType I =
BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
I != E; ++I)
if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
// Not in current loop? It must be an exit block.
ExitEdges.push_back(Edge(*BI, *I));
}
/// getLoopPreheader - If there is a preheader for this loop, return it. A
/// loop has a preheader if there is only one edge to the header of the loop
/// from outside of the loop. If this is the case, the block branching to the
/// header of the loop is the preheader node.
///
/// This method returns null if there is no preheader for the loop.
///
template<class BlockT, class LoopT>
BlockT *LoopBase<BlockT, LoopT>::getLoopPreheader() const {
// Keep track of nodes outside the loop branching to the header...
BlockT *Out = getLoopPredecessor();
if (!Out) return 0;
// Make sure there is only one exit out of the preheader.
typedef GraphTraits<BlockT*> BlockTraits;
typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(Out);
++SI;
if (SI != BlockTraits::child_end(Out))
return 0; // Multiple exits from the block, must not be a preheader.
// The predecessor has exactly one successor, so it is a preheader.
return Out;
}
/// getLoopPredecessor - If the given loop's header has exactly one unique
/// predecessor outside the loop, return it. Otherwise return null.
/// This is less strict that the loop "preheader" concept, which requires
/// the predecessor to have exactly one successor.
///
template<class BlockT, class LoopT>
BlockT *LoopBase<BlockT, LoopT>::getLoopPredecessor() const {
// Keep track of nodes outside the loop branching to the header...
BlockT *Out = 0;
// Loop over the predecessors of the header node...
BlockT *Header = getHeader();
typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
for (typename InvBlockTraits::ChildIteratorType PI =
InvBlockTraits::child_begin(Header),
PE = InvBlockTraits::child_end(Header); PI != PE; ++PI) {
typename InvBlockTraits::NodeType *N = *PI;
if (!contains(N)) { // If the block is not in the loop...
if (Out && Out != N)
return 0; // Multiple predecessors outside the loop
Out = N;
}
}
// Make sure there is only one exit out of the preheader.
assert(Out && "Header of loop has no predecessors from outside loop?");
return Out;
}
/// getLoopLatch - If there is a single latch block for this loop, return it.
/// A latch block is a block that contains a branch back to the header.
template<class BlockT, class LoopT>
BlockT *LoopBase<BlockT, LoopT>::getLoopLatch() const {
BlockT *Header = getHeader();
typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
typename InvBlockTraits::ChildIteratorType PI =
InvBlockTraits::child_begin(Header);
typename InvBlockTraits::ChildIteratorType PE =
InvBlockTraits::child_end(Header);
BlockT *Latch = 0;
for (; PI != PE; ++PI) {
typename InvBlockTraits::NodeType *N = *PI;
if (contains(N)) {
if (Latch) return 0;
Latch = N;
}
}
return Latch;
}
//===----------------------------------------------------------------------===//
// APIs for updating loop information after changing the CFG
//
/// addBasicBlockToLoop - This method is used by other analyses to update loop
/// information. NewBB is set to be a new member of the current loop.
/// Because of this, it is added as a member of all parent loops, and is added
/// to the specified LoopInfo object as being in the current basic block. It
/// is not valid to replace the loop header with this method.
///
template<class BlockT, class LoopT>
void LoopBase<BlockT, LoopT>::
addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LIB) {
assert((Blocks.empty() || LIB[getHeader()] == this) &&
"Incorrect LI specified for this loop!");
assert(NewBB && "Cannot add a null basic block to the loop!");
assert(LIB[NewBB] == 0 && "BasicBlock already in the loop!");
LoopT *L = static_cast<LoopT *>(this);
// Add the loop mapping to the LoopInfo object...
LIB.BBMap[NewBB] = L;
// Add the basic block to this loop and all parent loops...
while (L) {
L->Blocks.push_back(NewBB);
L = L->getParentLoop();
}
}
/// replaceChildLoopWith - This is used when splitting loops up. It replaces
/// the OldChild entry in our children list with NewChild, and updates the
/// parent pointer of OldChild to be null and the NewChild to be this loop.
/// This updates the loop depth of the new child.
template<class BlockT, class LoopT>
void LoopBase<BlockT, LoopT>::
replaceChildLoopWith(LoopT *OldChild, LoopT *NewChild) {
assert(OldChild->ParentLoop == this && "This loop is already broken!");
assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
typename std::vector<LoopT *>::iterator I =
std::find(SubLoops.begin(), SubLoops.end(), OldChild);
assert(I != SubLoops.end() && "OldChild not in loop!");
*I = NewChild;
OldChild->ParentLoop = 0;
NewChild->ParentLoop = static_cast<LoopT *>(this);
}
/// verifyLoop - Verify loop structure
template<class BlockT, class LoopT>
void LoopBase<BlockT, LoopT>::verifyLoop() const {
#ifndef NDEBUG
assert(!Blocks.empty() && "Loop header is missing");
// Setup for using a depth-first iterator to visit every block in the loop.
SmallVector<BlockT*, 8> ExitBBs;
getExitBlocks(ExitBBs);
llvm::SmallPtrSet<BlockT*, 8> VisitSet;
VisitSet.insert(ExitBBs.begin(), ExitBBs.end());
df_ext_iterator<BlockT*, llvm::SmallPtrSet<BlockT*, 8> >
BI = df_ext_begin(getHeader(), VisitSet),
BE = df_ext_end(getHeader(), VisitSet);
// Keep track of the number of BBs visited.
unsigned NumVisited = 0;
// Sort the blocks vector so that we can use binary search to do quick
// lookups.
SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
std::sort(LoopBBs.begin(), LoopBBs.end());
// Check the individual blocks.
for ( ; BI != BE; ++BI) {
BlockT *BB = *BI;
bool HasInsideLoopSuccs = false;
bool HasInsideLoopPreds = false;
SmallVector<BlockT *, 2> OutsideLoopPreds;
typedef GraphTraits<BlockT*> BlockTraits;
for (typename BlockTraits::ChildIteratorType SI =
BlockTraits::child_begin(BB), SE = BlockTraits::child_end(BB);
SI != SE; ++SI)
if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *SI)) {
HasInsideLoopSuccs = true;
break;
}
typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
for (typename InvBlockTraits::ChildIteratorType PI =
InvBlockTraits::child_begin(BB), PE = InvBlockTraits::child_end(BB);
PI != PE; ++PI) {
BlockT *N = *PI;
if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), N))
HasInsideLoopPreds = true;
else
OutsideLoopPreds.push_back(N);
}
if (BB == getHeader()) {
assert(!OutsideLoopPreds.empty() && "Loop is unreachable!");
} else if (!OutsideLoopPreds.empty()) {
// A non-header loop shouldn't be reachable from outside the loop,
// though it is permitted if the predecessor is not itself actually
// reachable.
BlockT *EntryBB = BB->getParent()->begin();
for (df_iterator<BlockT *> NI = df_begin(EntryBB),
NE = df_end(EntryBB); NI != NE; ++NI)
for (unsigned i = 0, e = OutsideLoopPreds.size(); i != e; ++i)
assert(*NI != OutsideLoopPreds[i] &&
"Loop has multiple entry points!");
}
assert(HasInsideLoopPreds && "Loop block has no in-loop predecessors!");
assert(HasInsideLoopSuccs && "Loop block has no in-loop successors!");
assert(BB != getHeader()->getParent()->begin() &&
"Loop contains function entry block!");
NumVisited++;
}
assert(NumVisited == getNumBlocks() && "Unreachable block in loop");
// Check the subloops.
for (iterator I = begin(), E = end(); I != E; ++I)
// Each block in each subloop should be contained within this loop.
for (block_iterator BI = (*I)->block_begin(), BE = (*I)->block_end();
BI != BE; ++BI) {
assert(std::binary_search(LoopBBs.begin(), LoopBBs.end(), *BI) &&
"Loop does not contain all the blocks of a subloop!");
}
// Check the parent loop pointer.
if (ParentLoop) {
assert(std::find(ParentLoop->begin(), ParentLoop->end(), this) !=
ParentLoop->end() &&
"Loop is not a subloop of its parent!");
}
#endif
}
/// verifyLoop - Verify loop structure of this loop and all nested loops.
template<class BlockT, class LoopT>
void LoopBase<BlockT, LoopT>::verifyLoopNest(
DenseSet<const LoopT*> *Loops) const {
Loops->insert(static_cast<const LoopT *>(this));
// Verify this loop.
verifyLoop();
// Verify the subloops.
for (iterator I = begin(), E = end(); I != E; ++I)
(*I)->verifyLoopNest(Loops);
}
template<class BlockT, class LoopT>
void LoopBase<BlockT, LoopT>::print(raw_ostream &OS, unsigned Depth) const {
OS.indent(Depth*2) << "Loop at depth " << getLoopDepth()
<< " containing: ";
for (unsigned i = 0; i < getBlocks().size(); ++i) {
if (i) OS << ",";
BlockT *BB = getBlocks()[i];
WriteAsOperand(OS, BB, false);
if (BB == getHeader()) OS << "<header>";
if (BB == getLoopLatch()) OS << "<latch>";
if (isLoopExiting(BB)) OS << "<exiting>";
}
OS << "\n";
for (iterator I = begin(), E = end(); I != E; ++I)
(*I)->print(OS, Depth+2);
}
//===----------------------------------------------------------------------===//
/// Stable LoopInfo Analysis - Build a loop tree using stable iterators so the
/// result does / not depend on use list (block predecessor) order.
///
/// Discover a subloop with the specified backedges such that: All blocks within
/// this loop are mapped to this loop or a subloop. And all subloops within this
/// loop have their parent loop set to this loop or a subloop.
template<class BlockT, class LoopT>
static void discoverAndMapSubloop(LoopT *L, ArrayRef<BlockT*> Backedges,
LoopInfoBase<BlockT, LoopT> *LI,
DominatorTreeBase<BlockT> &DomTree) {
typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
unsigned NumBlocks = 0;
unsigned NumSubloops = 0;
// Perform a backward CFG traversal using a worklist.
std::vector<BlockT *> ReverseCFGWorklist(Backedges.begin(), Backedges.end());
while (!ReverseCFGWorklist.empty()) {
BlockT *PredBB = ReverseCFGWorklist.back();
ReverseCFGWorklist.pop_back();
LoopT *Subloop = LI->getLoopFor(PredBB);
if (!Subloop) {
if (!DomTree.isReachableFromEntry(PredBB))
continue;
// This is an undiscovered block. Map it to the current loop.
LI->changeLoopFor(PredBB, L);
++NumBlocks;
if (PredBB == L->getHeader())
continue;
// Push all block predecessors on the worklist.
ReverseCFGWorklist.insert(ReverseCFGWorklist.end(),
InvBlockTraits::child_begin(PredBB),
InvBlockTraits::child_end(PredBB));
}
else {
// This is a discovered block. Find its outermost discovered loop.
while (LoopT *Parent = Subloop->getParentLoop())
Subloop = Parent;
// If it is already discovered to be a subloop of this loop, continue.
if (Subloop == L)
continue;
// Discover a subloop of this loop.
Subloop->setParentLoop(L);
++NumSubloops;
NumBlocks += Subloop->getBlocks().capacity();
PredBB = Subloop->getHeader();
// Continue traversal along predecessors that are not loop-back edges from
// within this subloop tree itself. Note that a predecessor may directly
// reach another subloop that is not yet discovered to be a subloop of
// this loop, which we must traverse.
for (typename InvBlockTraits::ChildIteratorType PI =
InvBlockTraits::child_begin(PredBB),
PE = InvBlockTraits::child_end(PredBB); PI != PE; ++PI) {
if (LI->getLoopFor(*PI) != Subloop)
ReverseCFGWorklist.push_back(*PI);
}
}
}
L->getSubLoopsVector().reserve(NumSubloops);
L->getBlocksVector().reserve(NumBlocks);
}
namespace {
/// Populate all loop data in a stable order during a single forward DFS.
template<class BlockT, class LoopT>
class PopulateLoopsDFS {
typedef GraphTraits<BlockT*> BlockTraits;
typedef typename BlockTraits::ChildIteratorType SuccIterTy;
LoopInfoBase<BlockT, LoopT> *LI;
DenseSet<const BlockT *> VisitedBlocks;
std::vector<std::pair<BlockT*, SuccIterTy> > DFSStack;
public:
PopulateLoopsDFS(LoopInfoBase<BlockT, LoopT> *li):
LI(li) {}
void traverse(BlockT *EntryBlock);
protected:
void insertIntoLoop(BlockT *Block);
BlockT *dfsSource() { return DFSStack.back().first; }
SuccIterTy &dfsSucc() { return DFSStack.back().second; }
SuccIterTy dfsSuccEnd() { return BlockTraits::child_end(dfsSource()); }
void pushBlock(BlockT *Block) {
DFSStack.push_back(std::make_pair(Block, BlockTraits::child_begin(Block)));
}
};
} // anonymous
/// Top-level driver for the forward DFS within the loop.
template<class BlockT, class LoopT>
void PopulateLoopsDFS<BlockT, LoopT>::traverse(BlockT *EntryBlock) {
pushBlock(EntryBlock);
VisitedBlocks.insert(EntryBlock);
while (!DFSStack.empty()) {
// Traverse the leftmost path as far as possible.
while (dfsSucc() != dfsSuccEnd()) {
BlockT *BB = *dfsSucc();
++dfsSucc();
if (!VisitedBlocks.insert(BB).second)
continue;
// Push the next DFS successor onto the stack.
pushBlock(BB);
}
// Visit the top of the stack in postorder and backtrack.
insertIntoLoop(dfsSource());
DFSStack.pop_back();
}
}
/// Add a single Block to its ancestor loops in PostOrder. If the block is a
/// subloop header, add the subloop to its parent in PostOrder, then reverse the
/// Block and Subloop vectors of the now complete subloop to achieve RPO.
template<class BlockT, class LoopT>
void PopulateLoopsDFS<BlockT, LoopT>::insertIntoLoop(BlockT *Block) {
LoopT *Subloop = LI->getLoopFor(Block);
if (Subloop && Block == Subloop->getHeader()) {
// We reach this point once per subloop after processing all the blocks in
// the subloop.
if (Subloop->getParentLoop())
Subloop->getParentLoop()->getSubLoopsVector().push_back(Subloop);
else
LI->addTopLevelLoop(Subloop);
// For convenience, Blocks and Subloops are inserted in postorder. Reverse
// the lists, except for the loop header, which is always at the beginning.
std::reverse(Subloop->getBlocksVector().begin()+1,
Subloop->getBlocksVector().end());
std::reverse(Subloop->getSubLoopsVector().begin(),
Subloop->getSubLoopsVector().end());
Subloop = Subloop->getParentLoop();
}
for (; Subloop; Subloop = Subloop->getParentLoop())
Subloop->getBlocksVector().push_back(Block);
}
/// Analyze LoopInfo discovers loops during a postorder DominatorTree traversal
/// interleaved with backward CFG traversals within each subloop
/// (discoverAndMapSubloop). The backward traversal skips inner subloops, so
/// this part of the algorithm is linear in the number of CFG edges. Subloop and
/// Block vectors are then populated during a single forward CFG traversal
/// (PopulateLoopDFS).
///
/// During the two CFG traversals each block is seen three times:
/// 1) Discovered and mapped by a reverse CFG traversal.
/// 2) Visited during a forward DFS CFG traversal.
/// 3) Reverse-inserted in the loop in postorder following forward DFS.
///
/// The Block vectors are inclusive, so step 3 requires loop-depth number of
/// insertions per block.
template<class BlockT, class LoopT>
void LoopInfoBase<BlockT, LoopT>::
Analyze(DominatorTreeBase<BlockT> &DomTree) {
// Postorder traversal of the dominator tree.
DomTreeNodeBase<BlockT>* DomRoot = DomTree.getRootNode();
for (po_iterator<DomTreeNodeBase<BlockT>*> DomIter = po_begin(DomRoot),
DomEnd = po_end(DomRoot); DomIter != DomEnd; ++DomIter) {
BlockT *Header = DomIter->getBlock();
SmallVector<BlockT *, 4> Backedges;
// Check each predecessor of the potential loop header.
typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
for (typename InvBlockTraits::ChildIteratorType PI =
InvBlockTraits::child_begin(Header),
PE = InvBlockTraits::child_end(Header); PI != PE; ++PI) {
BlockT *Backedge = *PI;
// If Header dominates predBB, this is a new loop. Collect the backedges.
if (DomTree.dominates(Header, Backedge)
&& DomTree.isReachableFromEntry(Backedge)) {
Backedges.push_back(Backedge);
}
}
// Perform a backward CFG traversal to discover and map blocks in this loop.
if (!Backedges.empty()) {
LoopT *L = new LoopT(Header);
discoverAndMapSubloop(L, ArrayRef<BlockT*>(Backedges), this, DomTree);
}
}
// Perform a single forward CFG traversal to populate block and subloop
// vectors for all loops.
PopulateLoopsDFS<BlockT, LoopT> DFS(this);
DFS.traverse(DomRoot->getBlock());
}
// Debugging
template<class BlockT, class LoopT>
void LoopInfoBase<BlockT, LoopT>::print(raw_ostream &OS) const {
for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
TopLevelLoops[i]->print(OS);
#if 0
for (DenseMap<BasicBlock*, LoopT*>::const_iterator I = BBMap.begin(),
E = BBMap.end(); I != E; ++I)
OS << "BB '" << I->first->getName() << "' level = "
<< I->second->getLoopDepth() << "\n";
#endif
}
} // End llvm namespace
#endif

View File

@@ -0,0 +1,181 @@
//===--------- LoopIterator.h - Iterate over loop blocks --------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// This file defines iterators to visit the basic blocks within a loop.
//
// These iterators currently visit blocks within subloops as well.
// Unfortunately we have no efficient way of summarizing loop exits which would
// allow skipping subloops during traversal.
//
// If you want to visit all blocks in a loop and don't need an ordered traveral,
// use Loop::block_begin() instead.
//
// This is intentionally designed to work with ill-formed loops in which the
// backedge has been deleted. The only prerequisite is that all blocks
// contained within the loop according to the most recent LoopInfo analysis are
// reachable from the loop header.
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_LOOPITERATOR_H
#define LLVM_ANALYSIS_LOOPITERATOR_H
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/Analysis/LoopInfo.h"
namespace llvm {
class LoopBlocksTraversal;
/// Store the result of a depth first search within basic blocks contained by a
/// single loop.
///
/// TODO: This could be generalized for any CFG region, or the entire CFG.
class LoopBlocksDFS {
public:
/// Postorder list iterators.
typedef std::vector<BasicBlock*>::const_iterator POIterator;
typedef std::vector<BasicBlock*>::const_reverse_iterator RPOIterator;
friend class LoopBlocksTraversal;
private:
Loop *L;
/// Map each block to its postorder number. A block is only mapped after it is
/// preorder visited by DFS. It's postorder number is initially zero and set
/// to nonzero after it is finished by postorder traversal.
DenseMap<BasicBlock*, unsigned> PostNumbers;
std::vector<BasicBlock*> PostBlocks;
public:
LoopBlocksDFS(Loop *Container) :
L(Container), PostNumbers(NextPowerOf2(Container->getNumBlocks())) {
PostBlocks.reserve(Container->getNumBlocks());
}
Loop *getLoop() const { return L; }
/// Traverse the loop blocks and store the DFS result.
void perform(LoopInfo *LI);
/// Return true if postorder numbers are assigned to all loop blocks.
bool isComplete() const { return PostBlocks.size() == L->getNumBlocks(); }
/// Iterate over the cached postorder blocks.
POIterator beginPostorder() const {
assert(isComplete() && "bad loop DFS");
return PostBlocks.begin();
}
POIterator endPostorder() const { return PostBlocks.end(); }
/// Reverse iterate over the cached postorder blocks.
RPOIterator beginRPO() const {
assert(isComplete() && "bad loop DFS");
return PostBlocks.rbegin();
}
RPOIterator endRPO() const { return PostBlocks.rend(); }
/// Return true if this block has been preorder visited.
bool hasPreorder(BasicBlock *BB) const { return PostNumbers.count(BB); }
/// Return true if this block has a postorder number.
bool hasPostorder(BasicBlock *BB) const {
DenseMap<BasicBlock*, unsigned>::const_iterator I = PostNumbers.find(BB);
return I != PostNumbers.end() && I->second;
}
/// Get a block's postorder number.
unsigned getPostorder(BasicBlock *BB) const {
DenseMap<BasicBlock*, unsigned>::const_iterator I = PostNumbers.find(BB);
assert(I != PostNumbers.end() && "block not visited by DFS");
assert(I->second && "block not finished by DFS");
return I->second;
}
/// Get a block's reverse postorder number.
unsigned getRPO(BasicBlock *BB) const {
return 1 + PostBlocks.size() - getPostorder(BB);
}
void clear() {
PostNumbers.clear();
PostBlocks.clear();
}
};
/// Specialize po_iterator_storage to record postorder numbers.
template<> class po_iterator_storage<LoopBlocksTraversal, true> {
LoopBlocksTraversal &LBT;
public:
po_iterator_storage(LoopBlocksTraversal &lbs) : LBT(lbs) {}
// These functions are defined below.
bool insertEdge(BasicBlock *From, BasicBlock *To);
void finishPostorder(BasicBlock *BB);
};
/// Traverse the blocks in a loop using a depth-first search.
class LoopBlocksTraversal {
public:
/// Graph traversal iterator.
typedef po_iterator<BasicBlock*, LoopBlocksTraversal, true> POTIterator;
private:
LoopBlocksDFS &DFS;
LoopInfo *LI;
public:
LoopBlocksTraversal(LoopBlocksDFS &Storage, LoopInfo *LInfo) :
DFS(Storage), LI(LInfo) {}
/// Postorder traversal over the graph. This only needs to be done once.
/// po_iterator "automatically" calls back to visitPreorder and
/// finishPostorder to record the DFS result.
POTIterator begin() {
assert(DFS.PostBlocks.empty() && "Need clear DFS result before traversing");
assert(DFS.L->getNumBlocks() && "po_iterator cannot handle an empty graph");
return po_ext_begin(DFS.L->getHeader(), *this);
}
POTIterator end() {
// po_ext_end interface requires a basic block, but ignores its value.
return po_ext_end(DFS.L->getHeader(), *this);
}
/// Called by po_iterator upon reaching a block via a CFG edge. If this block
/// is contained in the loop and has not been visited, then mark it preorder
/// visited and return true.
///
/// TODO: If anyone is interested, we could record preorder numbers here.
bool visitPreorder(BasicBlock *BB) {
if (!DFS.L->contains(LI->getLoopFor(BB)))
return false;
return DFS.PostNumbers.insert(std::make_pair(BB, 0)).second;
}
/// Called by po_iterator each time it advances, indicating a block's
/// postorder.
void finishPostorder(BasicBlock *BB) {
assert(DFS.PostNumbers.count(BB) && "Loop DFS skipped preorder");
DFS.PostBlocks.push_back(BB);
DFS.PostNumbers[BB] = DFS.PostBlocks.size();
}
};
inline bool po_iterator_storage<LoopBlocksTraversal, true>::
insertEdge(BasicBlock *From, BasicBlock *To) {
return LBT.visitPreorder(To);
}
inline void po_iterator_storage<LoopBlocksTraversal, true>::
finishPostorder(BasicBlock *BB) {
LBT.finishPostorder(BB);
}
} // End namespace llvm
#endif

View File

@@ -0,0 +1,160 @@
//===- LoopPass.h - LoopPass class ----------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines LoopPass class. All loop optimization
// and transformation passes are derived from LoopPass.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_LOOPPASS_H
#define LLVM_ANALYSIS_LOOPPASS_H
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Pass.h"
#include "llvm/PassManagers.h"
#include <deque>
namespace llvm {
class LPPassManager;
class Function;
class PMStack;
class LoopPass : public Pass {
public:
explicit LoopPass(char &pid) : Pass(PT_Loop, pid) {}
/// getPrinterPass - Get a pass to print the function corresponding
/// to a Loop.
Pass *createPrinterPass(raw_ostream &O, const std::string &Banner) const;
// runOnLoop - This method should be implemented by the subclass to perform
// whatever action is necessary for the specified Loop.
virtual bool runOnLoop(Loop *L, LPPassManager &LPM) = 0;
using llvm::Pass::doInitialization;
using llvm::Pass::doFinalization;
// Initialization and finalization hooks.
virtual bool doInitialization(Loop *L, LPPassManager &LPM) {
return false;
}
// Finalization hook does not supply Loop because at this time
// loop nest is completely different.
virtual bool doFinalization() { return false; }
// Check if this pass is suitable for the current LPPassManager, if
// available. This pass P is not suitable for a LPPassManager if P
// is not preserving higher level analysis info used by other
// LPPassManager passes. In such case, pop LPPassManager from the
// stack. This will force assignPassManager() to create new
// LPPassManger as expected.
void preparePassManager(PMStack &PMS);
/// Assign pass manager to manage this pass
virtual void assignPassManager(PMStack &PMS,
PassManagerType PMT);
/// Return what kind of Pass Manager can manage this pass.
virtual PassManagerType getPotentialPassManagerType() const {
return PMT_LoopPassManager;
}
//===--------------------------------------------------------------------===//
/// SimpleAnalysis - Provides simple interface to update analysis info
/// maintained by various passes. Note, if required this interface can
/// be extracted into a separate abstract class but it would require
/// additional use of multiple inheritance in Pass class hierarchy, something
/// we are trying to avoid.
/// Each loop pass can override these simple analysis hooks to update
/// desired analysis information.
/// cloneBasicBlockAnalysis - Clone analysis info associated with basic block.
virtual void cloneBasicBlockAnalysis(BasicBlock *F, BasicBlock *T, Loop *L) {}
/// deleteAnalysisValue - Delete analysis info associated with value V.
virtual void deleteAnalysisValue(Value *V, Loop *L) {}
};
class LPPassManager : public FunctionPass, public PMDataManager {
public:
static char ID;
explicit LPPassManager();
/// run - Execute all of the passes scheduled for execution. Keep track of
/// whether any of the passes modifies the module, and if so, return true.
bool runOnFunction(Function &F);
/// Pass Manager itself does not invalidate any analysis info.
// LPPassManager needs LoopInfo.
void getAnalysisUsage(AnalysisUsage &Info) const;
virtual const char *getPassName() const {
return "Loop Pass Manager";
}
virtual PMDataManager *getAsPMDataManager() { return this; }
virtual Pass *getAsPass() { return this; }
/// Print passes managed by this manager
void dumpPassStructure(unsigned Offset);
LoopPass *getContainedPass(unsigned N) {
assert(N < PassVector.size() && "Pass number out of range!");
LoopPass *LP = static_cast<LoopPass *>(PassVector[N]);
return LP;
}
virtual PassManagerType getPassManagerType() const {
return PMT_LoopPassManager;
}
public:
// Delete loop from the loop queue and loop nest (LoopInfo).
void deleteLoopFromQueue(Loop *L);
// Insert loop into the loop queue and add it as a child of the
// given parent.
void insertLoop(Loop *L, Loop *ParentLoop);
// Insert a loop into the loop queue.
void insertLoopIntoQueue(Loop *L);
// Reoptimize this loop. LPPassManager will re-insert this loop into the
// queue. This allows LoopPass to change loop nest for the loop. This
// utility may send LPPassManager into infinite loops so use caution.
void redoLoop(Loop *L);
//===--------------------------------------------------------------------===//
/// SimpleAnalysis - Provides simple interface to update analysis info
/// maintained by various passes. Note, if required this interface can
/// be extracted into a separate abstract class but it would require
/// additional use of multiple inheritance in Pass class hierarchy, something
/// we are trying to avoid.
/// cloneBasicBlockSimpleAnalysis - Invoke cloneBasicBlockAnalysis hook for
/// all passes that implement simple analysis interface.
void cloneBasicBlockSimpleAnalysis(BasicBlock *From, BasicBlock *To, Loop *L);
/// deleteSimpleAnalysisValue - Invoke deleteAnalysisValue hook for all passes
/// that implement simple analysis interface.
void deleteSimpleAnalysisValue(Value *V, Loop *L);
private:
std::deque<Loop *> LQ;
bool skipThisLoop;
bool redoThisLoop;
LoopInfo *LI;
Loop *CurrentLoop;
};
} // End llvm namespace
#endif

View File

@@ -0,0 +1,268 @@
//===- llvm/Analysis/MemoryBuiltins.h- Calls to memory builtins -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This family of functions identifies calls to builtin functions that allocate
// or free memory.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_MEMORYBUILTINS_H
#define LLVM_ANALYSIS_MEMORYBUILTINS_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Operator.h"
#include "llvm/InstVisitor.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/Support/TargetFolder.h"
#include "llvm/Support/ValueHandle.h"
namespace llvm {
class CallInst;
class PointerType;
class DataLayout;
class TargetLibraryInfo;
class Type;
class Value;
/// \brief Tests if a value is a call or invoke to a library function that
/// allocates or reallocates memory (either malloc, calloc, realloc, or strdup
/// like).
bool isAllocationFn(const Value *V, const TargetLibraryInfo *TLI,
bool LookThroughBitCast = false);
/// \brief Tests if a value is a call or invoke to a function that returns a
/// NoAlias pointer (including malloc/calloc/realloc/strdup-like functions).
bool isNoAliasFn(const Value *V, const TargetLibraryInfo *TLI,
bool LookThroughBitCast = false);
/// \brief Tests if a value is a call or invoke to a library function that
/// allocates uninitialized memory (such as malloc).
bool isMallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
bool LookThroughBitCast = false);
/// \brief Tests if a value is a call or invoke to a library function that
/// allocates zero-filled memory (such as calloc).
bool isCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
bool LookThroughBitCast = false);
/// \brief Tests if a value is a call or invoke to a library function that
/// allocates memory (either malloc, calloc, or strdup like).
bool isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
bool LookThroughBitCast = false);
/// \brief Tests if a value is a call or invoke to a library function that
/// reallocates memory (such as realloc).
bool isReallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
bool LookThroughBitCast = false);
//===----------------------------------------------------------------------===//
// malloc Call Utility Functions.
//
/// extractMallocCall - Returns the corresponding CallInst if the instruction
/// is a malloc call. Since CallInst::CreateMalloc() only creates calls, we
/// ignore InvokeInst here.
const CallInst *extractMallocCall(const Value *I, const TargetLibraryInfo *TLI);
static inline CallInst *extractMallocCall(Value *I,
const TargetLibraryInfo *TLI) {
return const_cast<CallInst*>(extractMallocCall((const Value*)I, TLI));
}
/// isArrayMalloc - Returns the corresponding CallInst if the instruction
/// is a call to malloc whose array size can be determined and the array size
/// is not constant 1. Otherwise, return NULL.
const CallInst *isArrayMalloc(const Value *I, const DataLayout *TD,
const TargetLibraryInfo *TLI);
/// getMallocType - Returns the PointerType resulting from the malloc call.
/// The PointerType depends on the number of bitcast uses of the malloc call:
/// 0: PointerType is the malloc calls' return type.
/// 1: PointerType is the bitcast's result type.
/// >1: Unique PointerType cannot be determined, return NULL.
PointerType *getMallocType(const CallInst *CI, const TargetLibraryInfo *TLI);
/// getMallocAllocatedType - Returns the Type allocated by malloc call.
/// The Type depends on the number of bitcast uses of the malloc call:
/// 0: PointerType is the malloc calls' return type.
/// 1: PointerType is the bitcast's result type.
/// >1: Unique PointerType cannot be determined, return NULL.
Type *getMallocAllocatedType(const CallInst *CI, const TargetLibraryInfo *TLI);
/// getMallocArraySize - Returns the array size of a malloc call. If the
/// argument passed to malloc is a multiple of the size of the malloced type,
/// then return that multiple. For non-array mallocs, the multiple is
/// constant 1. Otherwise, return NULL for mallocs whose array size cannot be
/// determined.
Value *getMallocArraySize(CallInst *CI, const DataLayout *TD,
const TargetLibraryInfo *TLI,
bool LookThroughSExt = false);
//===----------------------------------------------------------------------===//
// calloc Call Utility Functions.
//
/// extractCallocCall - Returns the corresponding CallInst if the instruction
/// is a calloc call.
const CallInst *extractCallocCall(const Value *I, const TargetLibraryInfo *TLI);
static inline CallInst *extractCallocCall(Value *I,
const TargetLibraryInfo *TLI) {
return const_cast<CallInst*>(extractCallocCall((const Value*)I, TLI));
}
//===----------------------------------------------------------------------===//
// free Call Utility Functions.
//
/// isFreeCall - Returns non-null if the value is a call to the builtin free()
const CallInst *isFreeCall(const Value *I, const TargetLibraryInfo *TLI);
static inline CallInst *isFreeCall(Value *I, const TargetLibraryInfo *TLI) {
return const_cast<CallInst*>(isFreeCall((const Value*)I, TLI));
}
//===----------------------------------------------------------------------===//
// Utility functions to compute size of objects.
//
/// \brief Compute the size of the object pointed by Ptr. Returns true and the
/// object size in Size if successful, and false otherwise. In this context, by
/// object we mean the region of memory starting at Ptr to the end of the
/// underlying object pointed to by Ptr.
/// If RoundToAlign is true, then Size is rounded up to the aligment of allocas,
/// byval arguments, and global variables.
bool getObjectSize(const Value *Ptr, uint64_t &Size, const DataLayout *TD,
const TargetLibraryInfo *TLI, bool RoundToAlign = false);
typedef std::pair<APInt, APInt> SizeOffsetType;
/// \brief Evaluate the size and offset of an object ponted by a Value*
/// statically. Fails if size or offset are not known at compile time.
class ObjectSizeOffsetVisitor
: public InstVisitor<ObjectSizeOffsetVisitor, SizeOffsetType> {
const DataLayout *TD;
const TargetLibraryInfo *TLI;
bool RoundToAlign;
unsigned IntTyBits;
APInt Zero;
SmallPtrSet<Instruction *, 8> SeenInsts;
APInt align(APInt Size, uint64_t Align);
SizeOffsetType unknown() {
return std::make_pair(APInt(), APInt());
}
public:
ObjectSizeOffsetVisitor(const DataLayout *TD, const TargetLibraryInfo *TLI,
LLVMContext &Context, bool RoundToAlign = false);
SizeOffsetType compute(Value *V);
bool knownSize(SizeOffsetType &SizeOffset) {
return SizeOffset.first.getBitWidth() > 1;
}
bool knownOffset(SizeOffsetType &SizeOffset) {
return SizeOffset.second.getBitWidth() > 1;
}
bool bothKnown(SizeOffsetType &SizeOffset) {
return knownSize(SizeOffset) && knownOffset(SizeOffset);
}
SizeOffsetType visitAllocaInst(AllocaInst &I);
SizeOffsetType visitArgument(Argument &A);
SizeOffsetType visitCallSite(CallSite CS);
SizeOffsetType visitConstantPointerNull(ConstantPointerNull&);
SizeOffsetType visitExtractElementInst(ExtractElementInst &I);
SizeOffsetType visitExtractValueInst(ExtractValueInst &I);
SizeOffsetType visitGEPOperator(GEPOperator &GEP);
SizeOffsetType visitGlobalAlias(GlobalAlias &GA);
SizeOffsetType visitGlobalVariable(GlobalVariable &GV);
SizeOffsetType visitIntToPtrInst(IntToPtrInst&);
SizeOffsetType visitLoadInst(LoadInst &I);
SizeOffsetType visitPHINode(PHINode&);
SizeOffsetType visitSelectInst(SelectInst &I);
SizeOffsetType visitUndefValue(UndefValue&);
SizeOffsetType visitInstruction(Instruction &I);
};
typedef std::pair<Value*, Value*> SizeOffsetEvalType;
/// \brief Evaluate the size and offset of an object ponted by a Value*.
/// May create code to compute the result at run-time.
class ObjectSizeOffsetEvaluator
: public InstVisitor<ObjectSizeOffsetEvaluator, SizeOffsetEvalType> {
typedef IRBuilder<true, TargetFolder> BuilderTy;
typedef std::pair<WeakVH, WeakVH> WeakEvalType;
typedef DenseMap<const Value*, WeakEvalType> CacheMapTy;
typedef SmallPtrSet<const Value*, 8> PtrSetTy;
const DataLayout *TD;
const TargetLibraryInfo *TLI;
LLVMContext &Context;
BuilderTy Builder;
IntegerType *IntTy;
Value *Zero;
CacheMapTy CacheMap;
PtrSetTy SeenVals;
SizeOffsetEvalType unknown() {
return std::make_pair((Value*)0, (Value*)0);
}
SizeOffsetEvalType compute_(Value *V);
public:
ObjectSizeOffsetEvaluator(const DataLayout *TD, const TargetLibraryInfo *TLI,
LLVMContext &Context);
SizeOffsetEvalType compute(Value *V);
bool knownSize(SizeOffsetEvalType SizeOffset) {
return SizeOffset.first;
}
bool knownOffset(SizeOffsetEvalType SizeOffset) {
return SizeOffset.second;
}
bool anyKnown(SizeOffsetEvalType SizeOffset) {
return knownSize(SizeOffset) || knownOffset(SizeOffset);
}
bool bothKnown(SizeOffsetEvalType SizeOffset) {
return knownSize(SizeOffset) && knownOffset(SizeOffset);
}
SizeOffsetEvalType visitAllocaInst(AllocaInst &I);
SizeOffsetEvalType visitCallSite(CallSite CS);
SizeOffsetEvalType visitExtractElementInst(ExtractElementInst &I);
SizeOffsetEvalType visitExtractValueInst(ExtractValueInst &I);
SizeOffsetEvalType visitGEPOperator(GEPOperator &GEP);
SizeOffsetEvalType visitIntToPtrInst(IntToPtrInst&);
SizeOffsetEvalType visitLoadInst(LoadInst &I);
SizeOffsetEvalType visitPHINode(PHINode &PHI);
SizeOffsetEvalType visitSelectInst(SelectInst &I);
SizeOffsetEvalType visitInstruction(Instruction &I);
};
} // End llvm namespace
#endif

Some files were not shown because too many files have changed in this diff Show More